Полупроводниковые диоды

Автор работы: Пользователь скрыл имя, 29 Марта 2014 в 05:21, реферат

Описание работы

Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле[4]. Джэдиш Чандра Боус развил далее открытие Брауна в устройство применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года). 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).

Файлы: 1 файл

Диод.docx

— 209.08 Кб (Скачать файл)

Транзистор применяется в:

  • Усилительных схемах. Работает, как правило, в усилительном режиме.[6][7] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[8][9] Транзисторы в таких усилителях работают в ключевом режиме.

  • Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

  • Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах. 
Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

 
Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 22 нм[источник не указан 866 дней]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

В настоящее время микропроцессоры Intel собираются на трёхмерных транзисторах (3d транзисторы) именуемых Tri-Gate. Эта революционная технология позволила существенно улучшить существующие характеристики процессоров. Отметим, что переход к 3D-транзисторам при технологическом процессе 22 нм позволил повысить производительность процессоров на 30 % (по оценкам Intel) и снизить энергопотребление [источник не указан 179 дней]. Примечательно, что затраты на производство возрастут всего на 2—3 %, то есть в магазинах новые процессоры не будут значительно дороже старых[источник не указан 179 дней]. Суть технологии в том, что теперь схема «сток-затвор-исток» находится не в одной, а в двух плоскостях, центральный элемент лежит сверху.

Сравнение с электронными лампами

Дополнительные сведения: Электронная лампа

До разработки транзисторов, вакуумные (электронные) лампы (или просто «лампы») были главными активными компонентами в электронном оборудовании.

Преимущества

Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:

  • малые размеры и небольшой вес, что способствует развитию миниатюрных электронных устройств;

  • высокая степень автоматизации производственных процессов, что ведёт к снижению удельной стоимости;

  • низкие рабочие напряжения, что позволяет использовать транзисторы в небольших, с питанием от батареек, электронных устройств;

  • не требуется дополнительного времени на разогрев катода после включения устройства;

  • уменьшение рассеиваемой мощности, что способствует повышению энергоэффективности прибора в целом;

  • высокая надёжность и бо́льшая физическая прочность;

  • очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет;

  • возможность сочетания с дополнительными устройствами, что облегчает разработку дополнительных схем, что не представляется возможным с вакуумными лампами;

  • стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании в микрофонах и в аудио устройствах.

[править] Недостатки (ограничения)

  • Кремниевые транзисторы обычно не работают при напряжениях выше 1 000 вольт (вакуумные лапмпы могут работать с напряжениями около 3 000 вольт). В отличие от вакуумных ламп были разработаны, транзисторы способные работать при напряжении в несколько десятков тысяч вольт;

  • высокая мощность, высокая частота, требующиеся для эфирного телевизионного вещания, лучше достигаются в вакуумных лампах в связи с большей подвижностью электронов в вакууме;

  • кремниевые транзисторы гораздо более уязвимы, чем вакуумные лампы к действию электромагнитного импульса, в том числе и одного из поражающих факторов высотного ядерного взрыва;

  • чувствительность к радиации и космических лучей (созданы специальные радиационно стойкие микросхемы для электронных устройств космических аппаратов);

  • вакуумные лампы создают искажения (так называемый ламповый звук), и некоторые люди считают их более приятными для восприятия на слух[10].

См. также

[+] Транзисторы

 

Примечания

  1. ↑ Vardalas, John, Twists and Turns in the Development of the Transistor IEEE-USA Today's Engineer, May 2003.

  1. ↑ Lilienfeld, Julius Edgar, "Method and apparatus for controlling electric current" U.S. Patent 1 745 175 1930-01-28 (filed in Canada 1925-10-22, in US 1926-10-08).

  1. ↑ membrana. На ветвях углеродного дерева вырос небывалый транзистор. Константин Болотов, 16 августа 2005

  1. ↑ 04-09-2006. Технологии. В США разрабатывается одномолекулярный транзистор

  1. ↑ http://www.chipnews.ru/html.cgi/arhiv/99_07/stat_13.htm Одноэлектронные устройства с интегрированными кремниевыми областями проводимости.

  1. ↑ Введение в электронику — Режимы работы усилительных элементов

  1. ↑ Режимы работы усилительного элемента

  1. ↑ NAD M2 Direct Digital Amplifier

  1. ↑ Импульсивная натура — Интегральный усилитель NAD M2

  1. ↑ van der Veen, M. (2005). "Universal system and output transformer for valve amplifiers". 118th AES Convention, Barcelona, Spain. 

Литература

  • А. К. Криштафович, В. В. Трифонюк. Основы промышленной электроники. — 2-е изд. — М.: "Высшая школа", 1985. — 287 с.

  • Н. И Овсянников Кремниевые биполярные транзисторы: Справ. пособие. — Мн.: "Высшая школа", 1989. — 302 с. — ISBN 5-339-00211-X

 


Информация о работе Полупроводниковые диоды