Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 17:13, контрольная работа
Для трехфазного трансформатора, паспортные данные и соединение обмоток которого приведены в табл.1 выполнить следующее:
1. Определить линейные и фазные токи и напряжения обмоток высшего и низшего напряжений.
2. Определить основные размеры трансформатора.
2.1 Выбрать конструкцию магнитной системы.
2.2 Выбрать марку стали и толщину стальных листов, вид их изоляции, определить индукцию магнитной системы.
2.3 Выбрать проводниковый материал обмоток.
2.4 Предварительно выбрать конструкцию обмоток.
(4.5)
Коэффициент вычисляется по формуле:
(4.6)
Для обмотки ВН (алюминиевый провод круглого сечения) добавочные потери вычисляются по формуле:
(4.7)
Коэффициент вычисляется по формуле:
(4.8)
где - число проводников обмотки в направлении, перпендикулярном направлению линий магнитной индукции осевой составляющей поля рассеяния;
- число проводников обмотки в
направлении, параллельном
- размер проводника, параллельного направлению линий магнитной индукции осевой составляющей поля рассеяния;
- размер проводника, перпендикулярного направлению линий магнитной индукции осевой составляющей поля рассеяния;
- общий диаметр обмотки в
- коэффициент Роговского.
Значения , , - в см; коэффициент = 0,95.
Определение основных потерь в отводах заключается в подсчете длины и массы металла в отводах. Этот подсчет может быть точно произведен только после окончательного установления конструкции отводов. На данном этапе возможен предварительный расчет массы отводов [4].
Как правило, сечение отвода равно сечению витка обмотки, т.е:
(4.9)
Длина проводника отвода:
- при соединении в «звезду»
(4.10)
- при соединении в «треугольник»
(4.11)
Масса металла отвода провода:
(4.12)
где - длина в см;
- площадь с мм2;
- плотность металла отвода в кг/м3 (для алюминия = 2700 кг/м3).
Основные потери в отводах определяем по формуле [4]:
(4.13)
где - коэффициент, зависящий от материала отвода: для алюминия - = 12,75.
Для трансформаторов мощностью 100…6300 кВ·А потери в стенках бака равны:
(4.14)
где - мощность трансформатора; кВ·А,
- коэффициент потерь, который по справочным данным [4] равен
Окончательное значение потерь КЗ с учетом рассчитанных параметров будет равно:
или
4.2 Определение напряжения короткого замыкания
Напряжение короткого замыкания определяет падение напряжения на трансформаторе, его внешнюю характеристику и ток короткого замыкания.
Напряжение короткого замыкания ,% находится как геометрическая сумма его активной ,% и реактивной ,% составляющей.
(4.15)
Активная составляющая находится по формуле:
(4.16)
Реактивная составляющая определяется по следующей формуле:
(4.17)
где - ширина приведенного потока рассеяния;
- коэффициент Роговского.
При расчете , а также при всех дальнейших расчетах следует пользоваться реальными размерами рассчитанных обмоток трансформатора ( , , , , ), а не приближенными значениями и , найденными при определении основных размеров трансформатора. Весь расчет напряжения КЗ проводится для одного стержня трансформатора.
Коэффициент , учитывающий отклонение реального поля рассеяния от идеального параллельного поля, вызванное конечным значением осевого размера обмоток по сравнению с их радиальными размерами ( , , ) может быть подсчитан по приближенной формуле:
(4.18)
где
(4.19)
В трансформаторах мощностью S ≤ 10000 кВ·А ширину приведенного канала определяем по формуле:
(4.20)
Коэффициент определяется по формуле [2]:
(4.21)
Коэффициент учета неравномерного распределения витков по высоте приближенно определяется по формуле [2]:
(4.22)
где при работе трансформатора на средней ступени напряжения ВН. Величина определяется как разность осевых размеров обмоток ВН и НН. Так как для рассчитываемого трансформатора осевые размеры обмоток равны, то = 0, и, следовательно, = 1.
Тогда реактивная составляющая будет равна:
Так как меньше допуска, увеличим ширину канала рассеяния на 1 см, тогда:
Пересчитаем значение реактивной составляющей:
Абсолютная погрешность напряжения короткого замыкания не должна превышать заданного значения более чем на 5%.
4.3 Механические силы в обмотках
Процесс короткого замыкания является аварийным режимом работы трансформатора. Вследствие многократного увеличения токов в обмотках, по сравнению с номинальными токами, в обмотках возникают ударные механические нагрузки, действующие на обмотки и части трансформатора, сильный перегрев обмоток, вызванный выделением большого количества тепла в проводниковом материале обмоток. Проверка обмоток на механическую прочность при КЗ включает:
- определение
максимального тока КЗ
- определение
механических сил между обмотка
- определение
механических напряжений в
- определение температуры обмоток при КЗ.
Действующее значение установившегося тока короткого замыкания определяется по формуле:
(4.23)
где - номинальный ток соответствующей обмотки, А;
- номинальная мощность
- мощность короткого замыкания, равная согласно [4]: = 500 МВ·А; = 2500 МВ·А; - напряжение короткого замыкания, %.
В начальный момент ток короткого замыкания вследствие наличия апериодической составляющей может значительно превысить установившейся ток и вызвать механические силы между обмотками, превышающие в несколько раз силы при установившемся токе короткого замыкания. Согласно общей теории трансформаторов это мгновенное максимальное значение тока короткого замыкания определяется по формуле:
(4.24)
где - коэффициент, учитывающий апериодическую составляющую тока короткого замыкания, определяемый по формуле:
(4.25)
Суммарная радиальная сила, действующая на наружную обмотку и стремящаяся растянуть ее, равна:
(4.26)
На обмотку также действует осевая сила , которая алгебраически складывается из двух сил и . Если нет разрыва в обмотке, то = 0. Так как для рассчитываемого трансформатора регулировочные витки располагаются по высоте всего наружного слоя и соответственно разрыв в обмотке отсутствует, то = 0.
(4.27)
Тогда полная осевая сила будет равна:
Учитывая взаимное расположение обмоток, имеем:
- сжимающая сила обмотки:
= 0
- сила, действующая на ярмо:
= 0
Для оценки механической прочности обмотки определяют напряжение сжатия во внутренней обмотке НН, возникающее под воздействием радиальной силы и напряжения сжатия в прокладках межвитковой и опорной изоляции обмоток.
При определении напряжения сжатия от радиальной силы находится сила, сжимающая внутреннюю обмотку, условно рассматриваемая как статическая:
(4.28)
Напряжение на сжатие в проводе обмоток:
(4.29)
или при допустимом МПа допустимого.
Напряжение на разрыв в наружной обмотке АН имеет гарантированный запас и в трансформаторах мощностью до 6300 кВ·А может не рассчитываться.
Напряжение сжатия на опорных прокладках НН:
(4.30)
где - число прокладок на окружности обмотки ( = 8);
- радиальный размер обмотки, м;
- ширина прокладки, м,
или при допустимом МПа допустимого.
При расчете температуры обмоток при КЗ полагают, что вследствие кратковременного процесса можно не учитывать теплоотдачу от обмотки к маслу и считать, что все тепло, выделяющееся в обмотке, накапливается, повышая ее температуру. Если при расчете температуры обмотки учесть увеличение удельного сопротивления провода с его нагревом, а также теплоемкость металла провода и его изоляции, то, полагая изменение температуры обмотки с изменением времени линейным, можно конечную температуру обмотки ,°С, через , с, после возникновения КЗ определить по формуле (для алюминиевых обмоток) [2]:
(4.31)
где - начальная температура обмотки, принимаемая за 90°С;
- длительность КЗ, которая для трансформаторов с номинальным напряжением 35 кВ·А и ниже равна 4 с.
°С,
то ниже допустимой температуры для алюминиевых обмоток = 200 °С.
Время достижения температуры 200 °С:
°С, (4.32)
5 РАСЧЕТ МАГНИТНОЙ СИСТЕМЫ
Окончательно выбираем конструкцию магнитной системы – трехстержневая с косыми стыками на крайних стержнях и прямыми на среднем. Прессовку стержней осуществляем деревянными планками и стержнями, ярм – прессующими шпильками, проходящими вне активной стали марки 3404 толщиной 0,3 мм.
5.1 Размеры пакетов и активных сечений стержня и ярма
Расстояние между осями соседних стержней плоских шихтованных магнитных систем равно сумме внешнего диаметра наружной обмотки и изоляционного расстояния между наружными обмотками соседних стержней, т.е.
(5.1)
Принимаем = 26 см.
Выбираем размеры пакетов стали провода при d =0,125 м. Чтобы получить полное сечение стержня и ярма, необходимо данные таблицы [1] умножить на два, т.к данные даны для одного сектора, т.е. половины круга заполнения сечения стержня и ярма.
a×b =120×18; 105×16; 95×6; 85×6; 65×7; 40×6; D = 0,125 м; nc = 6; aя= 65 мм; сечение стержня = 112,3 см2; сечение ярма = 115,3 см2; объем угла = 1,157 дм3
Определяем высоту окна, см:
(5.2)
где - высота обмотки ВН;
- расстояние от обмотки до ярма сверху (равно значению , определенному ранее по справочным данным);
- расстояние от обмотки до ярма снизу (равно значению , определенному ранее, плюс прессующее кольцо на 45 мм).
Принимаем = 57 см.
Активное сечение стержня и ярма определяется по формуле:
(5.3)
где - фактическое сечение стержня и ярма
= 0,01123 м2,
= 0,01153 м2.
5.2 Определение масс активной стали
Масса стали одного угла при многоступенчатой форме сечения определяется по формуле:
(5.4)
где - объем угла, дм3;
- плотность электротехнической
стали, для холоднокатаной
Масса стержней определяется по следующей формуле:
(5.5)
где - число стержней магнитной системы;
- площадь поперечного сечения стержня, см2;
- высота окна, см;
- высота ярма, см, равная ширине наибольшего листа ярма.
Масса ярм трехстержневого магнитопровода равна:
(5.6)
Масса стали трехстержневого магнитопровода равна:
(5.7)
6 ПОТЕРИ И ТОК ХОЛОСТОГО ХОДА
Для определения потерь в стали магнитной системы необходимо уточнить магнитную индукцию стержня и ярма:
(6.1)
Среднее значение индукции в углах возьмем равным индукции в стержне = 1,55, Тл.
По справочным данным [1] находим значения удельных потерь и коэффициенты увеличения потерь для углов с прямыми и косыми стыками.
Определим потери холостого хода:
(6.2)
Информация о работе Расчёт основных электрических велечин трансформатора