Автор работы: Пользователь скрыл имя, 15 Марта 2013 в 16:33, шпаргалка
1. Закон отражения света: Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл.
Ядерный реактор. Ядерный реактор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми.
Характерен для растворов коллоидных систем (например, золей, металлов, разбавленных латексов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. На эффекте Тиндаля основан ряд оптических методов определения размеров, формы и концентрации коллоидных частиц и макромолекул.
Эффект Тиндаля назван по имени открывшего его Джона Тиндаля.
При этом
надо иметь в виду, что свет, вступающий
в столб вещества, будет рассеиваться
последовательно каждым слоем этого
вещества. А так как молекулярное
рассеяние очень слабо, то световой
поток, проникающий в более глубокие
слои, практически не будет ослаблен,
так что рассеяние будет
Рис. 8.3.1
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.
Зависимость
спектральной чувствительности от частоты
или длины волны
Законы внешнего фотоэффекта
Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
и
Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.
Теория Фаулера
Основные закономерности внешнего фотоэффекта для металлов хорошо описываются теорией Фаулера. Согласно ей, после поглощения в металле фотона, его энергия переходит электронам проводимости, в результате чего электронный газ в металле состоит из смеси газов с нормальным распределением Ферми-Дирака и возбужденным (сдвинутым на hν) распределением по энергиям. Плотность фототока определяется формулой Фаулера:
Где , , — постоянные коэффициенты, зависящие от свойств облучаемого металла.
— принцип,
согласно которому любой объект может
проявлять как волновые, так и
корпускулярные свойства. Был введён
при разработке квантовой механики
для интерпретации явлений, наблюдаемых
в микромире, с точки зрения классических
концепций. Дальнейшим развитием принципа
корпускулярно-волнового
Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла.
Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
В настоящий
момент концепция корпускулярно-
«Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)».
Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов. В опытах ученый менял знак заряда на металлической пластине с отрицательного на положительный, на пути световых лучей помещал непрозрачный экран (пластинку из картона, металла и др.), стеклянную пластинку. При этих производимых друг за другом исследованиях фотоэффект не наблюдался. Экраны из кварца, льда вследствие поглощения длинноволновой части излучения только ослабляли наблюдаемый эффект. Отсюда ученый делает вывод, что фотоэффект вызывается главным образом ультрафиолетовыми лучами. При прочих равных условиях фототок возрастал при зачистке поверхности отрицательного электрода и повышении его температуры. Для изучения зависимости фотоэффекта от освещенности поверхности электрода Столетов использовал метод прерывистого освещения. К описанной ранее экспериментальной установке был добавлен картонный круг с вырезанными окошками. Круг помещался между источником света S и конденсатором G. Площади окошек и промежутков между ними были одинаковы. Когда круг приводился во вращение (скорость вращения можно было изменять), на конденсатор падало наполовину меньше света, чем при неподвижном круге. При этом сила фототока также уменьшалась в два раза. Следовательно, сила фототока прямо пропорциональна величине светового потока. Такой же результат ученый получил, изменяя площадь освещаемой части отрицательной пластины. Эксперименты, кроме того, позволили установить, что световые лучи действуют мгновенно: фототок возникал и прекращался практически одновременно с началом и прекращением освещения конденсатора. Увеличение напряжения вело к возрастанию силы фототока до определенного значения (ток насыщения), затем он оставался постоянным.
Выводы Столетова А.Г.
В результате
проведенных в воздухе
Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
где — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества),
— кинетическая энергия вылетающего электрона, — частота падающего фотона с энергией , h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.
Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.
Законы фотоэффекта:
Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.
Рисунок 6.1.1.Модель атома Дж. Томсона
Первые
прямые эксперименты по исследованию
внутренней структуры атомов были выполнены
Э. Резерфордом в 1909–1911 годах. Резерфорд
предложил применить