Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 22:01, курсовая работа
Синхронные машины применяются во многих отраслях народного хозяйства, в частности, в качестве генераторов в передвижных и стационарных электрических станциях, двигателей в установках не требующих регулирования частоты вращения или нуждающихся в постоянной частоте вращения.
Наиболее распространена конструктивная схема синхронной машины с вращающимся ротором, на котором расположены явновыраженные полюсы. Иногда явнополюсные синхронные машины малой мощности выполняют по конструктивной схеме машин постоянного тока, то есть с полюсами, расположенными на статоре, коллектор заменяется контактными кольцами.
Синхронные двигатели серии СД2 и генераторы серии СГ2 изготавливают мощностью от 132 до 1000 кВт, при высоты оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.
Электрические машины серий СД2 и СГ2 рассчитаны на продолжительный режим работы. Их возбуждение осуществляется от устройства, питающегося от дополнительной обмотки, заложенной в пазы статора.
Введение
1. Исходные данные
2. Магнитная цепь двигателя. Размеры, конфигурация, материал
2.1 Конфигурация
2.2 Главные размеры
2.3 Сердечник статора
2.4 Сердечник ротора
2.5 Сердечник полюса и полюсный наконечник
3. Обмотка статора
4. Расчет магнитной цепи
4.1 Воздушный зазор
4.2 Зубцы статора
4.3 Спинка статора
44 Полюсы
4.5 Спинка ротора
4.6 Воздушный зазор в стыке полюса
4.7 Общие параметры магнитной цепи
5. Активное и индуктивное сопротивление обмотки статора для установившегося режима
6. Расчет магнитной цепи при нагрузке
7. Обмотка возбуждения
8. Параметры обмоток и постоянные времени. Сопротивления обмоток статора при установившемся режиме
8.1 Сопротивления обмоток статора при установившемся режиме
8.2 Сопротивление обмотки возбуждения
8.3 Переходные и сверхпереходные сопротивления обмотки статора
8.4 Сопротивления для токов обратной и нулевой последовательности
8.5 Постоянные времени обмоток
9. Потери и КПД
10. Характеристики машин
10.1 Отношение короткого замыкания
11. Тепловой расчет синхронной машины
11.1 Обмотка статора
11.2 Обмотка возбуждения
11.3 Вентиляционный расчет
12. Масса и динамический момент инерции
12.1 Масса
12.2 Динамический момент инерции ротора
13. Механический расчет вала
Литература
кб1= .
МДС для воздушного зазора (9.121)
Fб=0,8бкбВб∙103=0,8∙1∙1,16∙0,
4.2 Зубцы статора
Расчетная площадь поперечного сечения зубцов статора (11.64)
Sз1(1/3)= мм2.
Магнитная индукция в зубце статора (11.65)
Вз1(1/3)=Ф∙106/Sз1(1/3)=17,5∙
Напряженность магнитного поля (приложение 9)
Нз1=12,9А/см.
Средняя длина пути магнитного потока (9.124)
Lз1=hп1=25 мм.
МДС для зубцов (9.125)
Fз1=0,1Нз1Lз1=0.1∙12,9∙325=32 А.
4.3 Спинка статора
Расчетная площадь поперечного сечения спинки статора (11.66)
Sc1=hc1ℓc1kc=35∙160∙0.97=5430 мм2.
Расчетная магнитная индукция (11.67)
Вс1=Ф∙106/2(Sc1)= 17,5∙10-3*106/(2∙5430)=1,61 Тл.
Напряженность магнитного поля (приложение (12)
Нс1=7,88 А/см.
Средняя длина пути магнитного потока (9.166)
Lс1=π(Dн1-hс1)/4р=3,14(406-35)
МДС для спинки статора (11.68)
Fс1=0,1∙Нс1Lс1=0,1∙7,88∙146=
4.5 Полюсы
Величина выступа полюсного наконечника (11.72)
b''п=0,5(b'н.п – bп)=0,5(162-78)=42 мм.
Высота широких полюсных наконечников (11.83)
Расстояние между боковыми поверхностями смежных полюсных наконечников (11.84)
aн.п=
-bн.п-3.14*hш/p=224,5-173-9,
Коэффициент магнитной проводимости потока рассеяния (11.85)
.
Длина пути магнитного потока (11.87)
Lп=h'п+0,7hн.п=63+0,7*28=82,6 мм.
Расстояние между боковыми поверхностями узких пакетов смежных полюсных наконечников
.
Коэффициент магнитной проводимости потока рассеяния в зоне узких пакетов полюсных наконечников
λу=0,5nY ℓУhY/аУ=0.5*4*8*23,6/109,8=3,
Коэффициент магнитной проводимости потока рассеяния в зоне крайних пакетов полюсных наконечников
λкр = 2*lкр *hY/aY=2*9*23,4/107,8=3,9
Суммарный коэффициент магнитной проводимости потока рассеяния полюсных наконечников
λн.п.=λш+λУ+λкр=50+3,4+3,9=57,
МДС для статора и воздушного зазора (11.91)
Fбзс=Fб+Fз1+Fс1=679+32+37=748 А.
Магнитный поток рассеяния полюсов (11.92)
Фσ=4λпℓн.пFбзс∙10-11=4∙150∙
Коэффициент рассеяния магнитного потока (11.93)
σ=1+Фσ/Ф=1+0,763∙10-3 /17,55∙10-3 =1,043
Расчетная площадь поперечного сечения сердечника полюса (11.94)
Sп=ксℓпbп=0,97∙170∙78=13,2*103 мм2.
Магнитный поток в сердечнике полюса (11.95)
Фп=Ф+Фσ=(17,55+0,763) 10-3 =18,31∙10-3 Вб.
Магнитная индукция в сердечнике полюса (11.96)
Вп=Фп/(Sп∙10-6)= 18,31∙10-3/(13,2*103∙10-6)=1,
Напряженность магнитного поля в сердечнике полюса (приложение 21)
Нп=3,5 А/см.
МДС для полюса (11.104)
Fп=0,1∙Lп∙Нп=0,1∙84,6*3,5=30 А.
4.6 Спинка ротора
Расчетная площадь поперечного сечения спинки ротора (11.105)
Sс2=ℓ2h'с2кс=170∙49∙0,97=8080 мм2.
Среднее значение индукции в спинке ротора (11.106)
Вc2=σФ∙106/(2Sс2)=1,043∙17,5∙
Напряженность магнитного поля в спинке ротора (приложение 21)
Нc2=1,28 А/см.
Средняя длина пути магнитного потока в спинке ротора (11.107)
Lс2=[π(D2+2hc2)/(4p)]+0,5h'с2=
МДС для спинки ротора (9.170)
Fc2=0.1∙Lc2∙Hc2=0.1∙63∙1,28=8 А.
4.7 Воздушный зазор в стыке полюса
Зазор в стыке (11.108)
бп2=2ℓп∙10-4+0,1=2∙170∙10-4+0,
МДС для зазора в стыке между сердечником полюса и полюсным наконечником (
Fп2=0,8бп2Вп∙103=0,8∙0,13∙1,
Суммарная МДС для полюса и спинки ротора (11.170)
Fпс=Fп+Fс2+Fп2+Fзс=30+8+104=
4.8 Общие параметры магнитной цепи
Суммарная МДС магнитной цепи (11.111)
FΣ(1)= Fбзс+Fпс=748+142=890 А.
Коэффициент насыщения (11.112)
кнас=FΣ/(Fб+Fп2)=890/(679+104)
Рисунок 1 - Характеристики холостого хода
5. Активное и
индуктивное сопротивление
Активное сопротивление обмотки фазы (9.178)
r1= Ом.
Активное сопротивление в относительных единицах (9.179)
r1*=r1I1/U1=0,118∙54,1∙ /400=0,0276 о.е.
Проверка правильности определения r1* (9.180)
r1*= о.е.
Коэффициенты, учитывающие укорочение шага (9.181, 9.182)
кβ1=0,4+0,6b1=0,4+0,6∙0,762=0,
к'β1=0,2+0,8b1=0,2+0,8∙0,762=
Коэффициент проводимости рассеяния (9.187)
λп1=
Коэффициент проводимости дифференциального рассеяния (11.118)
λд1= .
Коэффициент проводимости рассеяния лобовых частей обмотки (9.191)
λл1=0,34 .
Коэффициент зубцовой зоны статора (11.120)
квб= .
Коэффициент, учитывающий влияние открытия пазов статора на магнитную проницаемость рассеяния между коронками зубцов (§ 11.7)
кк=0,02
Коэффициент проводимости рассеяния между коронками зубцов (11.119)
.
Суммарный коэффициент магнитной проводимости потока рассеяния обмотки статора (11.121)
λ1=λп1+λл1+λд1+λк=1,154+1,092+
Индуктивное сопротивление обмотки статора (9.193)
хσ=1,58f1ℓ1w21λ1/(pq1∙108)=1.
Индуктивное сопротивление обмотки фазы статора (9.194)
хs*=х1I1/U1=0,1336∙54,1∙ /400=0,0787 о.е.
Проверка правильности определения х1*(9.195)
хs*= о.е.
6. Расчет магнитной цепи при нагрузке
Строим частичные характеристики намагничивания
Ф=f(Fбзс), Фσ=f(Fбзс), Фп=f(Fп2) (о.е.).
Строим векторные диаграммы Блонделя по следующим исходным данным: U1=1; I1=1; cosj=0,8;
ЭДС, индуктированная магнитным потоком воздушного зазора
Eб=1,06 о.е.
МДС для воздушного зазора
Fб=0,8 о.е.
МДС для магнитной цепи воздушного зазора и статора
Fбзс=0,9 о.е.
Предварительный коэффициент насыщения магнитной цепи статора
к'нас=Fбзс/Fб=0,9/0,8=1,13
Поправочные коэффициенты, учитывающие насыщение магнитной цепи
хd=0,95;
хq=0,67;
кqd=0,0036.
Коэффициенты реакции якоря
каd=0,85;
каq=0,32.
Коэффициент формы поля реакции якоря
кфа=1,05.
Амплитуда МДС обмотки статора (11.125)
Fa=0.45m1w1коб1I1кфа/р=0,45∙3∙
Амплитуда МДС обмотки статора в относительных единицах (11.127)
Fа*= о.е.
Поперечная составляющая МДС реакции якоря, с учетом насыщения, отнесенная к обмотке возбуждения (11.128)
Faq/cosy=хqkaqFa*=0.67∙0.32∙2,
ЭДС обмотки статора, обусловленная действием МДС
Eaq/cosy=0.73о.е.
Направление вектора ЭДС Ебd, определяемое построением вектора Еaq/cosψ
y=61Å;
cosy=0.48;
siny=0.87
Продольная МДС реакции якоря с учетом влияния поперечного поля (11.130)
F'ad=xdkadFa*siny+kqdFa*cosy·
Продольная составляющая ЭДС
Eбd*=Фбd=0,99 о.е.
МДС по продольной оси
Fбd*=0,82о.е.
Результирующая МДС по продольной оси (11.131)
Fба*=Fбd*+F'ad*=0,82+2,56=3,
Магнитный поток рассеяния
Фs*=0,23о.е.
Результирующий магнитный поток (11.132)
Фп*=Фбd*+Фs*=0,99+0,23=1,22 о.е.
МДС, необходимая для создания магнитного потока
Fп.с=0,42 о.е.
МДС обмотки возбуждения при нагрузке (11.133)
Fп.и*=Fба*+Fпс*=33,8+0,42=3,8 о.е.
МДС обмотки возбуждения при нагрузке (11.134)
Fп.н=Fпн*·FS(1)=3,8∙890=3382 А.
7. Обмотка возбуждения
Напряжение дополнительной обмотки (1.135)
Ud=U1wd/w1=400∙7/70=40 В.
Предварительная средняя длина витка обмотки возбуждения (11.136)
l'ср.п=2,5(lп+bп)=2,5(170+78)=
Предварительная площадь поперечного сечения проводника обмотки возбуждения (11.173)
S'= мм2.
Предварительное количество витков одной полюсной катушки (11.138)
w'п= .
Расстояние между катушками смежных полюсов (11.139)
ак= мм.
По таблице 10-14 принимаем изолированный медный провод марки ПЭВП (класс нагревостойкости изоляции В) прямоугольного сечения с двусторонней толщиной изоляции 0,15 мм, катушка многослойная.
Размеры проводника без изоляции (приложение 2)
а х b=1,9 х 3,15.
Размеры проводника с изоляцией (приложение 3)
а′ х b′=2,05х 3,3
Площадь поперечного сечения проводника (приложение 2)
S=5,622 мм2.
Предварительное наибольшее количество витков в одном слое
Nв'=(hп-hпр)/(1,05b')= (63-2∙5)/(1,05∙3,3)=15,3
Предварительное количество слоев обмотки по ширине полюсной катушки
N′ш=wg’/ Nв'=183/15,3=12
Выбираем Nш =18 слоев обмотки по ширине полюсной катушки
4 слоя по 16 витков
3 слоя по 13 витков
3 слоя по 10 витков
4 слоя по 8 витков
4 слоя по 6 витков
Уточненное наибольшее количество витков в одном слое)
Nв =16
Уточненное количество витков одной полюсной катушки
wп=189.
Размер полюсной катушки по ширине
bк.п=1,05Nша’=1,05·18·2,05=38,
Размер полюсной катушки по высоте (11.150)
hк.п=1,05Nвb’=1,05·16∙3,3=55,
Средняя длина витка катушки (11.151)
lср.п=2(lп+bп)+p(bк+2(bз+bи))=
Ток возбуждения при номинальной нагрузке (11.153)
Iп.н=Fп.н/wп=3382/189=17,9 А.
Количество параллельных ветвей в цепи обмотки возбуждения (§ 11.9)
ап=1.
Уточненная плотность тока в обмотке возбуждения (11.154)
Jп=Iп.н/(апS)=17,9/(1∙5,622)=
Общая длина всех витков обмотки возбуждения (11.155)
Lп=2рwпlср.п∙10-3=4∙189∙650∙10
Массам меди обмотки возбуждения (11.156)
mм.п=gм∙8,9LпS∙10-3=8.9∙5,622∙
Сопротивление обмотки возбуждения при температуре 20Å С (11.157)
rп=Lп/(rм20апS)=492/(57∙1∙5,
Максимальный ток возбуждения (11.158)
Iпmax=Uп/(rпmт)=(40-2)/(1,367∙
Коэффициент запаса возбуждения (11.159)
Iпmax/Iп.н=20,2/17,9=1,13.
Номинальная мощность возбуждения (11.160)
Рп=(40-2)∙20,2=770 Вт.
8. Параметры обмоток
и постоянные времени. Сопротивления
обмоток статора при
8.1 Сопротивления
обмоток статора при
Коэффициент продольной реакции якоря (таблица 11.4)
kad=0,85
кнас(0,5)= .
МДС для воздушного зазора
Fб(1)=679 о.е.
Индуктивное сопротивление продольной реакции якоря (11.162)
хad*= о.е.
Коэффициент поперечного реакции якоря (таблица 11.4)
кaq=0.32.
8.1.5 Индуктивное
сопротивление поперечной
хaq*= о.е.
Синхронное индуктивное сопротивление по продольной оси (11.164)
хd*=хad*+хs*=2.79+0.0787=2,868 о.е.
Синхронное индуктивное сопротивление по поперечной оси (11.165)
хq*=хaq*+хs*=1,12+0,0787=1,198 о.е.
8.2 Сопротивление обмотки возбуждения
Активное сопротивление обмотки возбуждения, приведенное к обмотке статора (11.166)
о.е.
Коэффициент магнитной проводимости потоков рассеяния обмотки возбуждения (11.167)
lпS=lн.п+0,65lпс+0,38lп.в=58,
Индуктивное сопротивление обмотки возбуждения (11.168)
хп*=1,27кadхad* о.е.
Индуктивное сопротивление рассеяния обмотки возбуждения (11.169)
хпs*=хп* - хad*=3.11-2,79=0,32 о.е.
8.3 Переходные и сверхпереходные сопротивления обмотки статора
Переходное индуктивное сопротивление обмотки статора по продольной оси (11.188)
x'd*=xs*+ о.е.
Переходное индуктивное сопротивление обмотки статора по поперечной оси
х'q*=xq*=1,198 о.е.
Сверхпереходное индуктивное сопротивление обмотки статора по продольной оси
x''d*=xd*=0.36
Сверхпереходное индуктивное сопротивление обмотки статора по поперечной оси
x''q*=xq*=1,198
8.4 Сопротивления для токов обратной и нулевой последовательности
Индуктивное сопротивление обмотки статора для токов обратной последовательности при работе машины на малое внешнее сопротивление (11.194)
х2*= о.е.
Индуктивное сопротивление обмотки статора для токов обратной последовательности при большом внешнем индуктивном сопротивлении (11.195)
х2*=0,5(х''d*+х''q*)=0.5(0,
Индуктивное сопротивление двухслойной обмотки статора для токов нулевой последовательности (11.196)
8
Активное сопротивление обмотки фазы статора для тока нулевой последовательности при рабочей температуре (11.197)
r0*=r1*(20)∙mт=0,02761∙1,38=0,
8.5 Постоянные времени обмоток
Обмотка возбуждения при разомкнутых обмотках статора и демпферной (11.198)
Тd0=xa*/w1rп*=3.11/2*3,14*50*
Обмотка возбуждения при замкнутых обмотках статора и демпферной (11.199)
Т'd=Td0xd*/xd*=2*0.36/2,868=0.
Обмотка статора при короткозамкнутых обмотках ротора (11.205)
Ta=x2*/w1r1*=0,78/(2∙3.14∙50∙
9. Потери и КПД
Расчетная масса стали зубцов статора (9.260)
mз1=7,8z1bз1срhn1l1kc∙10-6=7,
Магнитные потери в зубцах статора (9.251)
Pз1=4.4В2з1срmз1=4.4∙1,742∙11,
Масса стали спинки статора (9.261)
mc1=7.8p(Dн1-hc1)hc1l1kc∙10-6=
Магнитные потери в спинке статора (9.254)
Рс1=4.4В2с1mc1=4.4∙1.612∙50=
Амплитуда колебаний индукции (11.206)
В0=b0кбВб=0,35∙1,16∙0,73=0.
Среднее значение удельных поверхностных потерь (11.207)
рпов=к0(z1n1∙10-4)1.5(0.1В0t1)
Поверхностные потери машины (11.208)
Рпов=2рtalпрповкп∙10-6=4∙224,
Суммарные магнитные потери (11.213)
РсS=Рс1+Рз1+Рпов=570+160+1,2=
Потери в обмотке статора (11.209)
Рм1=m1I21r1mт+m1(I'пн/
)2rdmт=3∙54,12∙0,118∙1,38+3(
Потери на возбуждение синхронной машины при питании от дополнительной обмотки статора (11.214)
Рп=I2пнrпmт+2Iпн=17,9∙1,367∙1,
Добавочные потери в обмотке статора и стали магнитопровода при нагрузке (11.216)
Рдоб=0,005Рн=0,005∙30000=150 Вт.
Потери на трение в подшипниках и на вентиляцию (11.211)
Р'мх=Рт.п+Рвен=8 2 2=8( )2( )2=420 Вт.
Потери на трение щеток о контактные кольца (11.212)
Рт.щ=2,6IпнD1n1∙10-6=2.6∙17,9∙
Механические потери (11.217)
Рмх=Р'мх+Ртщ=420+20=440 Вт.
Суммарные потери (11.218)
РS=РсS+Рм1+Рдоб+Рп+Рмх=731+
КПД при номинальной нагрузке (11.219)
h=1-РS/(Р2н+РS)=1-3400/(30000+
10. Характеристики машин
10.1 Отношение короткого замыкания
DUн=(U10-U1н)/U1н=20%
Значение ОКЗ (11.227)
ОКЗ=Е'0*/хd*=1.13/2,868=0,4 о.е.
Кратность установившегося тока к.з. (11.228)
Ik/I1н=ОКЗ∙Iпн*=0.4 ∙3.8=1,52 о.е.
Наибольшее мгновенное значение тока (11.229)
iуд=1,89/х''d*=1.89/0,36=5,3 о.е.
Статическая перегружаемость (11.223)
S=E'00*kp/xdcosfн=2,8687∙1,
Угловые характеристики
Определяем ЭДС
Е'0*=4,2 о.е.
Определяем уравнение (11.221)
Р*=(Е'0*/хd*)sinQ+0.5(1/хq*-1/