Автор работы: Пользователь скрыл имя, 24 Ноября 2013 в 18:07, курсовая работа
Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца (эффект Мейснера). Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.
Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.
Введение…………………………………………………………………….…3
Теория сверхпроводимости…………………………………………………..5
Идеальный проводник и сверхпроводник, эффект Мейснера………….….6
Эффект Джозефсона…………………………………………………….........9
Сверхпроводники первого рода……………………………………………..9
Сверхпроводники второго рода………………………………………….…11
Основы микроскопической теории сверхпроводимости…………………12
Энергетические щепи…………………………………………………….…14
Высокотемпературная сверхпроводимость……………………………..…16
Использование сверхпроводимости………………………………….…….17
Последние открытия в области сверхпроводимости……………………...18
Основные характеристики композитных ВТСП-проводников………..….22
Список используемой литературы……………………………………….....26
Эффект Джозефсона может иметь много приложений, но он может быт и паразитным. Он возникает на границах зерен в поликристаллических образцах новых сверхпроводников и препятствует, например, попыткам измерения лондоновской глубины проникновения.
Сверхпроводники первого рода.
Проанализируем протекание тока по проволоке круглого сечения, находящемся в сверхпроводящем состоянии. В отличии от экранирующего тока, возникающего при наложении магнитного поля, ток от внешнего источника будем называть транспортным. Если бы этот ток протекал внутри сверхпроводника, он создавал бы в его объеме магнитное поле, что противоречит эффекту Мейснера. Следовательно, ток, протекающий должен быть ограничен тонким слоем около поверхности, в который проникает магнитное поле. Толщина этого поверхностного слоя равна глубине проникновения l.
Протекающий по сверхпроводнику транспортный ток будет создавать магнитное поле. Между плотностью тока и магнитным полем существует строгая связь, которая означает, что критическому полю соответствует определенная критическая плотность тока (правило Сильсби). Причем совершенно безразлично, о каком токе идет речь - транспортном, или экранирующем.
Для проволоки круглого сечения магнитное поле на поверхности В0 и суммарный ток I связаны отношением:
B0= m0(1/(2 pR)),
где R - радиус проволоки.
Из данного уравнения следует, что критический ток имеет такую же зависимость от температуры, как и критическое магнитное поле. Расчет показывает, что, например, для оловянной проволоки радиусом 0,5 мм критическая сила тока при Т=0 К составляет 75 А .
С помощью правила Сильсби можно определить также критические токи для сверхпроводников во внешнем магнитном поле. Для этого необходимо сложить внешнее магнитное поле с полем транспортного тока на поверхности. Плотность тока достигает результирующее значение, когда это результирующее поле Врез становится критическим. Для проволоки радиусом R в магнитном поле Bа, перпендикулярном ее оси:
Врез=2Bа+(1/(2 pR)) m0.
Здесь значение 2Вa на образующей цилиндра получено для коэффициента размагничивания uм=1/2.
Зависимость критического тока от внешнего поля Вa можно определить из уравнения:
Iс=(2pR)/m0(Bс-2Bа)
Рис.5 Зависимость критического тока от внешнего магнитного поля, перпендикулярного проволоке.
Процесс нарушения сверхпроводимости в массивных образцах при достижении критической силы тока происходит с образованием промежуточного состояния. При включении внешнего магнитного поля происходит его наложение на круговое поле тока, в результате чего геометрия межфазных границ между сверхпроводящими и нормальными областями значительно усложняется.
Рис.6 Структура промежуточного состояния проволоки, несущей критический ток.
Сверхпроводники второго рода
Принципиальное отличие сверхпроводника второго рода от сверхпроводника первого рода начинает проявляться в тот момент, когда магнитное поле на поверхности достигает значения Вc1 . При этом сверхпроводник переходит в смешанное состояние. Проникновение магнитного поля в объем сверхпроводника приводит к тому, что в этих условиях транспортный ток распределяется равномерно по всему сечению, не занятому вихревыми нитями. Таким образом, в отличие от сверхпроводников 1 рода, в которых ток протекает по тонкому поверхностному слою, в сверхпроводники 2 рода транспортный ток проникает во всем объеме.
Известно, что между током и магнитным полем всегда существует сила взаимодействия, которую называют силой Лоренса. Применительно к смешанному состоянию сверхпроводника эта сила будет действовать между абрикосовскими вихрями и транспортным током. Возможности транспортного перераспределения тока ограничены конечными размерами проводника, и, следовательно, под действием силы Лоренса вихревые нити должны перемещаться.
Для описания особенностей поведения сверхпроводников в магнитном поле проанализируем термодинамику образования поверхностей раздела между сверхпроводящей и нормальной фазами. В нормальной области В³Bc, в сверхпроводящей спадает до нуля на глубине порядка l (рис.4). В нормальном состоянии плотность сверхпроводящих электронов равна нулю, в то время, как в сверхпроводнике она имеет определенную величину ns(Т). На некотором расстоянии от границы x плотность сверхпроводящих электронов по порядку величины достигает значения, равного ns(Т).
Характеристический параметр x называют длиной когерентности, зависимость ее от температуры определяется формулой:
z (Т)= z0(Tc/(Tc-T))½,
где z0 зависит от свойств сверхпроводника и составляет по порядку величины 10-6 - 10-8 м.
Рис.7 Распределение магнитного потока и плотности сверхпроводящих электронов вблизи фазовой границы.
Основы микроскопической теории сверхпроводимости
Переход от нормального к сверхпроводящему состоянию связан с определенным упорядочиванием в электронной системе твердого тела. На основании этого можно предположить, что переход в сверхпроводящее состояние обусловлен взаимодействием электронов друг с другом.
Были попытки объяснить
Конструктивной основой для создания такой теории стала идея о взаимодействии электронов через колебания решетки, сформулированная в 1950-51 гг. практически независимо друг от друга Г. Фрелихом и Дж. Бардиным.
Такое рассмотрение позволило уже в 1957 г. Дж. Бардину, Л. Куперу и Дж. Шифферу создать микроскопическую теорию сверхпроводимости, получившая название БКШ (по начальным буквам фамилий авторов).
Рис.8 Дж. Бардин, Л. Купер и Дж. Шиффер
Рассмотрим качественно механизм межэлектронного взаимодействия через колебания решетки. Как известно, ионы в кристаллической структуре совершают колебания около положений равновесия. Если в такую решетку поместить всего два электрона и пренебречь всеми остальными, то положительно заряженные ионы, расположенные вблизи этих электронов, будут притягиваться к ним. Образуются две области поляризации решетки, то есть скопления положительного заряда ионов вблизи оказывающих поляризующее действие отрицательно заряженных электронов. Второй электрон и поляризованная им область решетки могут реагировать на поляризацию, вызванную первым электроном. При этом второй электрон испытывает притяжение к месту поляризации первого электрона, а следовательно, и к нему самому.
Рассмотренная выше модель имеет весьма существенный недостаток - она является статической. Реально электроны в металле имеют очень большие скорости (порядка 106 м/c) . Поэтому можно предположить, что электрон, перемещаясь по кристаллу, притягивает ионы и создает область избыточного положительного заряда. Такая динамическая поляризация является относительно устойчивой, поскольку масса ионов значительно больше, чем масса электронов. Таким образом, второй электрон, пролетая сквозь решетку, притягивается к этому сгустку положительного заряда, а следовательно, и к первому электрону. Отметим, что при высоких температурах (больше критической) интенсивное тепловое движение узлов кристалла делает поляризацию решетки слабой, следовательно, практически невозможным взаимодействие между электронами.
Энергетические щели
Для развития динамической модели будем полагать, что второй электрон движется по поляризованному следу первого электрона. При этом возможны две ситуации: первая - импульсы электронов одинаковы по величине и направлению, то есть они образуют пару частиц с удвоенным импульсом, вторая - импульсы электронов одинаковы по величине и противоположны по направлению. Такую корреляцию электронов также можно рассматривать, как пару с нулевым импульсом. Если электроны, кроме того, будут иметь противоположные спины, то такая пара будет обладать уникальными свойствами.
Чрезвычайно интересным с точки
зрения понимания механизма
Распределение электронов в нормальном металле описывается функцией Ферми-Дирака
f(E)=(e (E- m)/(kT)+ 1)-1.
Где k - постоянная Больцмана; m - химический потенциал.
При температуре Т=0 К полная функция распределения N(E)=f(E)g(E), определяющая число частиц с энергией Е, равна плотности числа состояний g(E), так как
f(E)=g(E)=((4 pV)/ n3)(2m)3/2Е1/2.
Взаимодействие электронов в сверхпроводнике с образованием куперовских пар приводит к тому, что небольшая область энергии вблизи уровня Ферми становится запрещенной для электронов - возникает энергетическая щель. В пределах этой щели нет ни одного разрешенного для неспаренных электронов энергетического уровня. Под влиянием взаимодействия между электронами, имеющими энергию, близкую к Еf, они оказываются как бы сдвинутыми относительно уровня Ферми.
ъ
Рис.9 а) плотность состояний электронов в нормальном металле при Т=0. Занятое состояние заштриховано
б) плотность состояний неспаренных электронов в сверхпроводнике.
Рис.10 Зависимость ширины энергетической щели от температуры.
При Т=0 К ширина щели максимальна (2d0 » 10-2 - 10-3 эВ), а все свободные (неспаренные) электроны находятся под щелью (на уровне с энергией меньше Еf). При повышении температуры часть куперовских пар разрушается, а некоторые неспаренные электроны “перескакивают” щель и заполняют состояния с энергией больше Еf. Ширина щели 2d(T) при этом уменьшается.
Между максимальной (при Т=0 К) шириной щели 2d0 и критической температурой Тc существует прямая зависимость. По теории Б.К.Ш., удовлетворительно согласующейся с экспериментальными данными для большого числа сверхпроводников (кроме Nb, Ta, Pb, Hg):
2d0=3,5 kTс.
Ширина щели по этому соотношению определяется в эВ.
Высокотемпературная сверхпроводимость
Рассмотренный ранее механизм перехода в сверхпроводящее состояние основан на межэлектронном взаимодействии посредством кристаллической решетки, то есть за счет обмена фононами. Как показывают оценки, для такого механизма сверхпроводимости, называемая фононным, максимальная величина критической температуры не может превышать 40 К.
Таким образом, для реализации высокотемпературной сверхпроводимости (с Тc>90 К) необходимо искать другой механизм корреляции электронов. Один из возможных подходов описан подходов описан американским физиком Литтлом. Он предположил, что в органических веществах особого строения возможна сверхпроводимость при комнатных температурах. Основная идея заключалась в том, чтобы получить своеобразную полимерную нитку с регулярно расположенными электронными фрагментами. Корреляция электронов, движущихся вдоль цепочки, осуществляется за счет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на несколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме.
В основе теоретической
модели высокотемпературной
Использование сверхпроводимости
Идея высокотемпературной
Информация о работе Сверхпроводимость, в том числе и высокотемпературная