Туннельный эффект, туннельный диод

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 15:57, реферат

Описание работы

Для облегчения понимания физика работы туннельного диода необходимо рассмотреть электронные и дырочные полупроводники, явления, возникающие при их контакте, и влияние степени легирования исходные материалов на свойства p-n-перехода.
Плоскостная модель кристаллической решётки германия дана на рис. 1а. Атомы расположены на таких расстояниях друг от друга, что их внешние (валентные) электронные оболочки взаимно проникают друг в друга.

Содержание работы

Вырожденные полупроводники. 9
Зависимость параметров от температуры. 18
Зависимость параметров туннельного диода от свойств полупроводникового материала. Сравнительная оценка диодов из разных материалов. 19
Использованная литература. 22
Методы изготовления туннельных диодов. 16
Образование p-n-перехода. 8
Обращенный диод. 16
Основные параметры туннельного диода и его эквивалентная схема. 17
Параметры туннельного диода и их определение. 17
Туннельный диод. 11
Физика туннельного диода. 3
Электронные и дырочные полупроводники. 3

Файлы: 1 файл

Физика туннельного диода.doc

— 773.00 Кб (Скачать файл)

При подаче на p-n-переход внешнего напряжения можно управлять величиной внутренней разности потенциалов в переходе и тем самым менять условия прохождения тока через него. Если минус внешнего источника приложить к материалу л-типа, а плюс — к материалу p-типа, то величина внутреннего потенциального барьера уменьшится на величину внешнего напряжения, что создаст условия для перехода электронов и дырок в p- и n-области соответственно. Через переход потечет ток.

   Данное направление  называется пропускным. При смене  полярности внешнего напряжения (минус к p-области, а плюс к л-области) внутренний потенциальный барьер в p-n-переходе возрастет на величину напряжения внешнего источника, что приведет к прекращению потока электронов из материала л-типа в материал p-типа и обратного потока дырок. Такое направление называется запирающим.

  Энергетические диаграммы  зон p-n-перехода (при отсутствии и наличии внешнего напряжения) приведены на рис. 3, е — 3, е. Состояние термодинамического равновесия электронов по обе стороны p-n-перехода характеризуется энергетическим равенством уровней Ферми в обеих частях материала. Таким образом, уровень Ферми при отсутствии внешнего смещения (см. рис. 3, г) будет одинаковым для n- и p-областей. При этом границы зон в приконтактной области изогнутся на величину контактной разности потенциалов, величина которой будет равна разности в положениях уровней Ферми в изолированных электронном и дырочном полупроводниках.

  Внешнее смещение  в пропускном направлении уменьшает  внутренний потенциальный барьер на величину напряжения смещения (рис. 3,д), что создает условия для диффузии электронов и дырок в p- и n-области соответственно. При этом электроны из зоны проводимости n-материала попадают в зону проводимости (т. е. в ту же самую зону) p-материала, а дырки из валентной зоны p-материала попадают в валентную же зону p-материала. Этим обычный диод отличается от туннельного диода, где, как будет показано ниже, переход носителей через потенциальный барьер связан с изменением зоны их нахождения до и после перехода, что и обусловливает ряд отличительных свойств туннельного диода.

  В случае внешнего  напряжения обратной полярности  внутренний потенциальный барьер увеличится (рис. 3,е), препятствуя диффузии основных носителей, и диод будет заперт. Основными называются носители, определяющие тип проводимости полупроводника, т. е. электроны для n-материала и дырки для p-материала.

  Но в каждом  из этих полупроводников, кроме  основных носителей, имеются еще  и носители противоположного знака, которые называются неосновными.

  Это дырки в электронном полупроводнике и электроны в дырочном полупроводнике. Причиной их появления служит тепловая. генерация, создающая носители обоих знаков и наличие в каждом полупроводнике, кроме определяющей примеси (донорной для л-материала и акцепторной для p-материала), еще и небольшого количества примеси противоположного характера (из-за несовершенной очистки материала). Так как для неосновных носителей обратное смещение на переходе будет пропускным, то через переход будет течь небольшой обратный ток, величина которого определяется концентрацией неосновных носителей в полупроводнике. Она может быть определена из соотношения, полученного следующим образом.

  В состоянии теплового  равновесия динамические процессы  тепловой генерации пар уравновешиваются процессами рекомбинации. Скорость тепловой генерации при неизменной температуре постоянна и не зависит от характера полупроводника (электронный или дырочный). Скорость рекомбинации в собственном полупроводнике пропорциональна произведению плотностей носителей, т. е. пропорциональна величине

ni·pi=ni2 , так как ni = pi ,

где ni и pi—соответственно концентрации электронов и дырок в собственном полупроводнике. Величина ni2 постоянна для данного типа полупроводника и зависит только от температуры.. При комнатной температуре для германия ni2= (2·1013)2 см−3 для кремния ni2= (1,4·1010)2 см−3. В примесном полупроводнике скорость рекомбинации не изменится по сравнению со скоростью рекомбинации в собственном полупроводнике, потому что в обоих случаях они уравновешиваются равными по скоростям процессами тепловой генерации, а так как скорость рекомбинации пропорциональна произведению плотностей носителей, то

pp·np= nn·pn = ni·pi= ni2,

где pp·np — соответственно концентрации дырок в дырочном полупроводнике и электронов в                     электронном полупроводнике, т. е. концентрации основных носителей;

 nn·pn —соответственно концентрации электронов в дырочном полупроводнике и дырок в электронном полупроводнике, т. е. концентрации неосновных носителей. Отсюда по известной концентрации основных носителей нужно определить плотность неосновных носителей, а значит и величину обратного тока p-n-перехода.

 

Вырожденные полупроводники.

  Рассмотренные выше полупроводники, идущие на изготовление большинства обычных полупроводниковых приборов, имеют  концентрацию легирующих примесей порядка 1014 — 1018см−3. Дальнейшее повышение количества примеси приводит к качественным изменениям свойств полупроводниковых материалов, которые необходимо рассмотреть. Знание свойств таких сильнолегированных материалов очень важно, потому что они служат основой для изготовления туннельных диодов.

  В обычных полупроводниках  атомы примеси, произвольно расположенные  в исходном материале, достаточно удалены друг от друга, так что между собой не взаимодействуют. На энергетической диаграмме это отображается расположением отдельных, не расщепленных в зону энергетических уровней электронов примесных атомов. Вследствие локализованности этих уровней электроны, находящиеся на них, не могут перемещаться по кристаллу и участвовать таким образом, в электропроводности.

  По мере увеличения концентрации  примесей расстояния между их  атомами уменьшаются, что увеличивает  взаимодействие между ними. Это приводит к расщеплению примесных уровней в примесную зону, которая может слиться с основной зоной (зонной проводимости для примесной зоны доноров или с валентной зоной для примесной зоны акцепторов). Такое слияние зон происходит при концентрациях примеси, превышающих, некоторое критическое значение. Так, для германия значение этой концентрации составляет около 2·1019 см−3, а для кремния — 6·1019 см−3. Такие сильнолегированные полупроводники относятся к типу вырожденных, отличительной чертой которых является то, что уровень Ферми находится внутри либо зоны проводимости, либо валентной зоны.

  Для определения положения уровня Ферми в вырожденном полупроводнике можно воспользоваться тем же графическим методом по определению положения этого уровня, который был применен к обычным (невырожденным) полупроводникам. Соответствующие построения для электронного и дырочного полупроводников приведены на рис. 4. Как видно из графиков, уровень Ферми расположен внутри зоны проводимости для электронного полупроводника и внутри валентной зоны для дырочного, что характерно для вырожденных полупроводников.

   Энергетическая диаграмма p-n-перехода, образованного вырожденным электронным и дырочным полупроводниками, показана на рис. 4. Так как уровни Ферми в обеих частях полупроводника в состоянии термодинамического равновесия должны сравняться, то выполнение этого условия приводит к перекрытию зон. Дно зоны проводимости электронной области получается ниже потолка валентной зоны дырочного полупроводника и, как видно из рис. 4, величина контактной разности потенциалов φk при контакте двух вырожденных полупроводников будет близка к ширине запрещенной зоны Eg=(Ec — Еv) исходного материала [так как (EF — Еc) и (EV — ЕF)<<Eg то Eg ≈ e· φk]. Ширина p-n-перехода обратно пропорциональна концентрации примесей, и при концентрациях, соответствующих вырождению (1019—1020 см−3), ширина перехода получается порядка 100 А°.

  Перекрытие зон и чрезвычайно малая ширина перехода и приводят к появлению аномалии в вольтамперной характеристике p-n-перехода. Но прежде чем рассматривать эту аномалию, необходимо кратко ознакомиться с известным квантовомеханическим явлением — туннельным эффектом, лежащим в основе аномалии.

 

 

 

 

 

Туннельный  диод.

 

  Как было упомянуто ранее, свое название туннельный диод получил из-за лежащего в его основе работы известного в квантовой механике туннельного эффекта. Еще до открытия Эсаки этот эффект в полупроводниках был достаточно изучен, первоначально Зенером, затем Мак−Аффи, Шокли и другими, которые рассмотрели туннелирование электронов через запрещенную зону в сплошном полупроводнике. Дальнейшее развитие теория туннельного эффекта в полупроводниках получила в фундаментальных работах Л. В. Келдыша.

Основа этого явления заключается  в том, что частица (например, электрон 2 на рис.5), имея энергию Eэл, которая меньше высоты потенциального барьера Eб обладает конечной вероятностью проникновения сквозь этот барьер. Потенциальный барьер Eб (например, связанный с работой выхода электрона из металла) по законам классической физики не составляет препятствия для электрона 1, обладающего большей энергией, чем высота этого барьера. При определенных условиях и электрон 2 может преодолеть его, хотя энергия электрона меньше высоты потенциального барьера. Причем этот электрон не огибает барьера, а как бы «туннелирует» сквозь него (отсюда и название эффекта), имея одну и ту же энергию до и после перехода.

   Такой механизм преодоления  потенциального барьера можно связать с волновым представлением движения электрона в твердом теле, когда при столкновении с барьером электрон подобно волне проникает на какую-то глубину внутрь его. В случае барьера конечной толщины имеется какая-то конечная вероятность найти волну (электрон) с другой стороны барьера, что эквивалентно прохождению электроном барьера. Чем меньше ширина барьера, тем больше «прозрачность» его для волны; т. е. тем больше вероятность прохождения электрона сквозь этот потенциальный барьер. При определенных условиях туннельный эффект может

наблюдаться в p-n-переходе. Чтобы найти условия, при которых возможен туннельный эффект, необходимо выяснить влияние параметров перехода на вероятность туннельного эффекта.

   Ширина сплавного p-n-перехода связана с концентрацией примесей в полупроводнике следующим образом:

где ε — диэлектрическая проницаемость материала;

       e — заряд электрона.

  При обычном легировании полупроводниковых материалов (концентрация примесей донорных или акцепторных порядка 1016 см−3) обедненный слой получается довольно широким (около 10−4 см). При такой ширине перехода вероятность туннелирования электронов через него пренебрежимо мала.

Вероятность Wэл туннельного прохождения электрона через p-n-переход для треугольного потенциального барьера определяется следующим выражением

где Eg − ширина запрещенной зоны (здесь принято Eg ≈ e·φkчто справедливо для вырожденных полупроводников).

   Для определения плотности туннельного тока необходимо найти вероятное количество электронов, проходящих через потенциальный барьер в 1 сек. Оно будет равно произведению вероятности туннелирования электрона Wэл на число столкновений электрона с барьером за 1 сек, равному a·Eg/ћ·δ (а— постоянная решетки кристалла), т. е.

 

  С ростом степени легирования  материала ширина p-n-перехода уменьшается и вероятность туннелирования возрастает. При концентрации примесей 1019—1020 см−3, соответствующих вырождению, ширина перехода получается порядка 100 А° и вероятное количество туннельных переходов электрона за 1 сек будет уже порядка 1012 (для германия). При этом напряженность электрического поля в p-n-переходе около 106 в/см и переброс электронов за счет эффекта Зенера еще не сказывается.

  Таким образом, туннельный  эффект становится практически ощутимым лишь в сильнолегированных материалах. Изучая узкие сильнолегированные сплавные переходы в германии, Эсаки и открыл новый тип полупроводникового прибора — туннельный диод, вольтамперная характеристика которого изображена на рис. 6, а в сравнении с вольтамперной характеристикой обычного диода, изображенной штриховой  линией.

Энергетическая диаграмма туннельного  перехода при отсутствии внешнего смещения была показана на рис. 4. Образовавшееся вследствие вырождения полупроводникового материала перекрытие зон является необходимым условием для возможного туннелирования электронов через потенциальный барьер узкого p-n-перехода. Положение уровня Ферми затенено снизу для выделения того уровня энергии электронов в разных материалах, который находится в одинаковых энергетических условиях при термодинамическом равновесии тел. Вероятность заполнения этого уровня, как известно, равна половине. Такому выделению уровня Ферми способствует и слабая зависимость его положения в примесных полупроводниках от изменения температуры в пределах, встречающихся на практике. Подобное выделение этого уровня облегчает рассмотрение вопросов, связанных с распределением электронов по энергетическим уровням в зонах.

  Такой подход и применен (рис. 6, б—ж) для объяснения формы вольтамперной характеристики туннельного диода.

  При отсутствии внешнего смещения  на p-n-переходе уровень Ферми имеет одинаковое энергетическое положение в p- и n-областях (см. рис. 6. б). Распределение электронов выше и ниже уровня Ферми в обеих областях перекрывающихся

частей зон будет аналогичное, что определяет одинаковые вероятности для туннелирования электронов слева направо и справа налево. Результирующий ток через переход в этом случае равен нулю, что соответствует точке в на вольтамперной характеристике (см. рис. 6, а)

   При подаче на переход  прямого смещения (плюс источника питания на p-область и минус — на n-область), уменьшающего перекрытие зон. Энергетические распределения электронов смещаются друг относительно друга совместно с уровнями Ферми (см рис. 6. в). Это приводит к преобладанию электронов в n-области над электронами одной и той же энергии в p-области и количества свободных уровней в p-области над незанятыми уровнями в n-области на одинаковых уровнях в месте перекрытия зон. Вследствие этого поток электронов из n-области в p-область будет преобладать над обратным потоком и во внешней цепи появится ток, что соответствует точке в на характеристике (см. рис. 6, а). По мере роста внешнего смещения результирующий ток через переход будет увеличиваться до тех пор, пока не начнет сказываться уменьшение перекрытия зон, как это показано на рис. 6, г. Это будет соответствовать максимуму туннельного тока. При дальнейшем увеличении напряжения в результате уменьшения величины перекрытия зон туннельный ток начнет спадать и наконец спадает до нуля (штрих-пунктир на рис. 6, а) в момент, когда границы дна зоны проводимости и потолка валентной зоны совпадут (см. рис. 6, д).

Информация о работе Туннельный эффект, туннельный диод