Автор работы: Пользователь скрыл имя, 30 Октября 2013 в 14:59, реферат
ДИСПЕРСНЫЕ СИСТЕМЫ - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д. с. могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем др. фазы.
Ведение…………………………………………………………………..2
Основные типы дисперсных систем…………………………………...2
Образование дисперсных систем………………………………………4
Устойчивость дисперсных систем..........................................................5
Классификации дисперсных систем…………………………………...8
Структурообразование в дисперсных системах и в растворах полимеров……………………………………………………………….16
Свойства дисперсных систем и определение размера частиц……….23
Список использованной литературы. …………………………………24
ПЛАН:
ВВЕДЕНИЕ
ДИСПЕРСНЫЕ СИСТЕМЫ - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д. с. могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, некоторые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.
Основные типы дисперсных систем.
По дисперсности,
т. е. размеру частиц
Образование дисперсных систем.
Возможно
двумя путями: диспергационным и
конденсационным.
Устойчивость дисперсных систем.
Устойчивость
дисперсных систем характеризуется
постоянством дисперсности (распределения
частиц по размерам) и концентрации
дисперсной фазы (числом частиц в единице
объема). Наиб. сложна в теоретич. аспекте и важна в
практич. отношении проблема устойчивости
аэрозолей и жидких лиофобных Д. с. Различают
седиментационную устойчивость и устойчивость
к коагуляции (агрегативную устойчивость).
Седиментационно устойчивы коллоидные
системы с газовой и жидкой дисперсионной
средой, в к-рых броуновское движение частиц
препятствует оседанию; грубодисперсные
системы с одинаковой плотностью составляющих
их фаз; системы, скоростью седиментации
в к-рых можно пренебречь из-за высокой
вязкости среды. В агрегативно устойчивых
Д. с. непосредств. контакты между частицами
не возникают, частицы сохраняют свою
индивидуальность. При нарушении агрегативной
устойчивости Д. с. частицы, сближаясь
в процессе броуновского движения, соединяются
необратимо или скорость агрегации становится
значительно больше скорости дезагрегации.
Между твердыми частицами возникают непосредственные
точечные ("атомные") контакты, к-рые
затем могут превратиться в фазовые (когезионные)
контакты, а соприкосновение капель и
пузырьков сопровождается их коалесценцией
и быстрым сокращением суммарной площади
межфазной пов-сти. Для таких систем потеря
агрегативной устойчивости означает также
потерю седимeнтационной устойчивости.
В агрегативно устойчивых системах дисперсный
состав может изменяться вследствие изотермич.
перегонки - мол. переноса в-ва дисперсной
фазы от мелких частиц к более крупным.
Этот процесс обусловлен зависимостью
давления насыщенного пара (или концентрации
насыщенного р-ра) от кривизны пов-сти
раздела фаз (см. Капиллярные явления).
Агрегативная устойчивость и длительное
существование лиофобных Д. с. с сохранением
их св-в обеспечивается стабилизацией.
Для высокодисперсных систем с жидкой
дисперсионной средой используют введение
в-в - стабилизаторов (электролитов, ПАВ,
полимеров). В теории устойчивости Дерягина-Ландау-Фервея-
Зависимость энергии взаимодействия Е между частицами от расстояния R: 1 и 2 - ближний и дальний минимумы соответственно.
При введении в Д. с. в качестве стабилизатора ПАВ фактором стабилизации м. б. "термодинамич. упругость" пленок среды, разделяющей частицы. Стабилизация обеспечивается тем, что при сближении частиц, напр., капель или газовых пузырей, происходит растяжение и утоньшение разделяющей их прослойки, содержащей ПАВ, и, как следствие, нарушение адсорбц. равновесия. Восстановление этого равновесия и приводит к повышению устойчивости прослойки среды, разделяющей частицы. Гидродинамич. сопротивление вытеснению жидкой дисперсионной среды из прослойки между сближающимися частицами - один из кинетич. факторов стабилизации Д. с. Он особенно эффективен в системах с высоковязкой дисперсионной средой, а при застекловывании последней делает систему неограниченно устойчивой к агрегации частиц и коалесценции. Структурно-мех. фактор стабилизации, по П. А. Ребиндеру, возникает при образовании на межфазной границе полимолекулярных защитных слоев из мицеллообразующих ПАВ, высокомолекулярных соед., а иногда и тонких сплошных или дискретных фазовых пленок. Межфазный защитный слой должен обладать способностью сопротивляться деформациям и разрушению, достаточной подвижностью для "залечивания" возникших в нем дефектов и, что особенно важно, быть лиофилизованным с внеш. стороны, обращенной в сторону дисперсионной среды. Если защитный слой недостаточно лиофилен, он, предохраняя частицы от коалесценции, не сможет предотвратить коагуляции. Структурно-мех. барьер является, по существу, комплексным фактором стабилизации, к-рый включает термодинамич., кинетич. и структурные составляющие. Он универсален и способен обеспечить высокую агрегативную устойчивость любых Д.с. с жидкой дисперсионной средой, в т. ч. высококонцентрированных, наиб. важных в практич. отношении. Осн. св-ва Д. с. определяются поверхностными явлениями: адсорбцией, образованием двойного электрического слоя и обусловленных им электрокинетических явлений, контактными взаимодействиями частиц дисперсной фазы. Размер частиц определяет оптич. (светорассеяние и др.) и молекулярно-кинетич. св-ва (диффузия, термофорез, осмос и др.). Д. с. повсеместно распространены в природе. Это - горные породы, грунты, почвы, атм. и гидросферные осадки, растит. и животные ткани. Д. с. широко используют в технол. процессах; в виде Д. с. выпускается большинство пром. продуктов и предметов бытового потребления. Высокодисперсные техн. материалы (наполненные пластики, дисперсноупрочненные композиц. материалы) отличаются чрезвычайно большой прочностью. На высокоразвитых пов-стях интенсивно протекают гетерог. и гетерог.-каталитич. хим. процессы. Учение о Д. с. и поверхностных явлениях в них составляет сущность коллоидной химии. Самостоят. раздел коллоидной химии - физико-химическая механика - изучаeт закономерности структурообразования и мех. св-ва структурированных Д. с. и материалов в их связи с физ.-хим. явлениями на межфазных границах.
Классификации дисперсных систем.
По степени раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10-5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10-7 до 10-9м. Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.
Эта классификация была предложена Оствальдом и широко используется до настоящего времени. Недостатком классификации следует считать невозможность отнесения дисперсных систем, приготовленных с твердой или жидкой дисперсной фазой, к какому-либо классу, если размер частиц составляет несколько нанометров. Пример такой классификации приведен в табл. 1.
Академик П.А. Ребиндер предложил
более совершенную классификаци
Дисперсная система по классификации Ребиндера обозначается дробью, в которой дисперсная фаза ставится в числителе, а дисперсионная среда – в знаменателе. Например: Т1/Ж2. Индекс 1 обозначает дисперсную фазу, а индекс 2 – дисперсионную среду.
Коллоидная химия изучает свойства как тонко-, так и грубодисперсных систем; как свободно-, так и связнодисперсных систем.
Включение в одну науку столь большого количества разнообразных систем, различных как по природе фаз, так и по размерам частиц и агрегатному состоянию фаз, основано на том, что все они обладают общими свойствами - гетерогенностью и принципиальной термодинамической неустойчивостью. Центральное место в коллоидной химии занимают ультрамикрогетерогенные системы со свободными частицами. Это - так называемые, коллоидные системы.
Таблица 1
Классификация дисперсных систем по агрегатным состояниям фаз.
Дисперсион-ная среда |
Дисперс-ная фаза |
Примеры дисперсных систем |
Твердая |
Твердая |
Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати |
Твердая |
Жидкая |
Жемчуг, вода в граните, вода в бетоне, остаточный мономер в полимерно-мономерных частицах |
Твердая |
Газо- образная |
Газовые включения в различных твердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерные пены, пенополиуретан |
Жидкая |
Твердая |
Суспензии, краски, пасты, золи, латексы |
Жидкая |
Жидкая |
Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон |
Жидкая |
Газо- образная |
Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов |
Газообразная |
Твердая |
Дымы, космическая пыль, аэрозоли |
Газообразная |
Жидкая |
Туманы, газы в момент сжижения |
Газообразная |
Газо- образная |
Коллоидная система не образуется |