Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 12:09, контрольная работа
В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания.
Химическая идентификация (качественный анализ) и измерения (количественный) анализ являются предметом специальной химической науки – аналитической химии.
Аналитическими являются те реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс связан с выпадением или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ.
Физико-химические методы анализа веществ
Введение
В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания.
Химическая идентификация (качественный анализ) и измерения (количественный) анализ являются предметом специальной химической науки – аналитической химии.
1. Качественный анализ
Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементарный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов и анионов, присутствующих в аналитической пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения веществ по аналитическому сигналу.
Аналитическими являются те реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс связан с выпадением или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ.
В аналитической работе используют химические реакции, протекающие достаточно быстро и полно. Выбирая реакции для химического анализа, руководствуются законом действующих масс и представлениями о химическом равновесии в растворах.
Выполняя аналитическую реакцию, соблюдают условия, которые определяются свойствами определяемого продукта. Анализируемое вещество должно быть устойчиво в среде, в которой ведется определение и температуре. Реакция должна быть чувствительной по отношению к определяемому веществу (определение вещества даже при очень малой его концентрации). Порог чувствительности реакций характеризуют количественно при помощи обнаруживаемого минимума.
Обнаруживаемый минимум – это наименьшее количество вещества, которое удается обнаружить с помощью данной реакции (при соблюдении необходимых условий) [миллионные доли грамма – микрограммы, 1мкг=10-6г]. В качественном анализе применяют только те реакции, обнаруживаемый минимум которых не превышает 50 мкг.
Помимо чувствительности большое значение имеют селективность реакции. Селективные или избирательные, реакции, дают схожий внешний эффект с несколькими ионами. Например, оксалат аммония образует белый осадок с катионами Ca2+, Sr2+, Ba2+ и др. Чем меньше таких ионов, тем более выражена избирательность (селективность) реакции. Специфической называют такую реакцию, которая позволяет обнаружить ион (вещество) в присутствии других ионов (веществ). Например, специфична реакция обнаружения иона аммония действием щелочи при нагревании, так как в этих условиях аммиак может выделяться только из солей аммония:
NH4Cl + NaOH = NH3↑ + H2O + NaCl
Обнаружение ионов с
помощью специфических и
2. Качественное определение ионов неорганических веществ
Методы качественного
анализа базируются на ионных реакциях,
которые позволяют
Для идентификации с
помощью образования
Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами (табл. 1).
Реагент |
Формула |
Катион |
Продукт реакции |
Ализарин Бензидин Гексагидроксостибиат калия Гексанитрокобальтат натрия Гексацианоферат (II) калия α-Диметилглиоксим Дипикриламин Дитизон в хролоформе Дихромат калия Магнезон ИРЕА Мурексид Родамин Б Хромоген черный |
C14H6O2(OH)2 C12H8(NH2)2 K[Sb(OH)6] Na3Co(NO2)6 K4[Fe(CN)6] С4N2H8O2 [C6H2(NO2)3]2NH C13H12N4S K2Cr2O7 C16H10O5N2SClNa C8H6N6O6 C24H21O3N2Cl C20H13O7N3S |
Al3+ Cr6+, Mn7+ Na+ K+ Fe3+ Cu2+ Ni2+, Fe2+, Pb2+ K+ Zn2+ Ca2+ Mg2+ Ca2+ Sr2+, Ba2+ [SbCl6]- Mg2+ |
Ярко-красный осадок Соединение синего цвета Белый осадок Желтый осадок Темно-синий осадок Красно-бурый осадок Ярко-красный осадок Оранжево-красный осадок Малиново-красный раствор Оранжевый осадок Ярко-красный раствор Красный раствор Фиолетовый раствор Синий раствор Вино-красный раствор |
Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии в веществе тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь, бор), бледно-голубой (свинец, мышьяк).
Анионы обычно классифицируют
по растворимости солей, либо по окислительно-
Реагент |
Формула |
Ион |
Продукт реакции |
Антипирин 5-%-ный в H2SO4 Дифениламин в H2SO4 Паромолибдат аммония в HNO3 Родоизонат бария |
C6H5С3HON2(CH3)2 (C6H5)2NH (NH4)6Mo7O24·4H2O |
NO2-, NO3- NO3- PO43- PO43- |
Ярко-зеленый раствор Ярко-красный раствор Темно-синий раствор Обесцвечивание раствора |
Классификация анионов
по окислительно-
Групповой реагент |
Анионы |
Групповой признак |
KMnO4 + H2SO4 + I2,
крахмал + H2SO4
KI + H2SO4 + крахмал MnCl2 + HCl(конц.) |
Восстановители Cl-, Br-, I-, SCN-, C2O42-, S2-, SO32-, NO2- S2-, SO32-, S2O32-
Окислители CrO42-, MnO4-, ClO-, ClO3-, NO2-, BrO3- NO3-, CrO42-, NO2-, ClO3-, [Fe(CN)6]3-, ClO-, MnO4-
Инертные SO42-, CO32-, SiO32-, F-, PO43-, BO2- |
Обесцвечивание раствора
Обесцвечивание раствора
Окрашивание раствора Окрашивание раствора |
Химическая идентификация вещества базируется в основном на реакциях осаждения, комплексообразования, окисления и восстановления, нейтрализации, при которых происходит выпадение окрашенного осадка, изменение цвета раствора или выделение газообразных веществ.
3. Количественный анализ
Определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе называется количественным анализам. При количественном анализе измеряют интенсивность аналитического сигнала, т.е. находят численное значение оптической плотности раствора, расхода раствора на титрование, массы прокаленного осадка и т.п. По результатам количественного измерения сигнала рассчитывают содержание определенного компонента в пробе. Результаты определений обычно выражают в массовых долях, %.
Количественный анализ проводят в определенной последовательности, в которую входит отбор и подготовка проб, проведения анализа, обработка и расчет результатов анализа.
4. Классификация методов количественного анализа
Все методы количественного анализа можно разделить на две большие группы: химические и инструментальные. Это разделение условно, так как многие инструментальные методы основаны на использовании химических законов и свойств веществ. Обычно количественные методы анализа классифицируют по измеряемым физическим или химическим свойствам.
Измеряемая величина (свойство) |
Название метода |
Масса вещества, доступная измерению |
Масса
Объем
Плотность Поглощение или испускание инфракрасных лучей Колебания молекул Поглощение или испускание видимых ультрафиолетовых и рентгеновских лучей. Колебания атомов. Рассеяние света
Диффузионный ток на электроде Электродный потенциал Количество электричества
Электрическая проводимость Радиоактивность
Скорость реакции
Тепловой эффект реакции
Вязкость Поверхностное натяжение Понижение температуры замерзания Повышение температуры кипения |
Гравиметрический
Масс-спектрометрический
Титриметрический
Газоволюметрический Денсиметрический Инфракрасная спектроскопия
Комбинационное рассеяние Спектральный и
Фотометрический (колориметрия, спектрофотомерия и другие) Атомно-адсорбционная спектроскопия Люминесцентный Полярография и
Потенциометрический Кулонометрический
Кондуктометрический Радиоактивных индикаторов
Кинетический Каталитический Термометрия Калориметрия Вискозиметрический Тензометрический Криоскопический
Эбуллиоскопический |
От макро- (0,5-1г, 10-100 мл) до ультра микроколичеств (>1мг, 0,1мл) Микроколичества (1-5мг, 01-0,5мл) От макро- до ультрамикроколичеств >> Макро- и микроколичества >>
>> Полумикро- (10-50 мг, 1-5мл) и микроколичества >>
Микроколичества >> Полумикро- и микроколичества Макро- и микроколичества
Микро- и ультрамикроколичества Макро- и микроколичества От макро- до ультрамикроколичеств Макро и микроколичества >> Макроколичества >> >> >> >>
>> >> |
5. Гравиметрический метод
Сущность метода заключается в получении труднорастворимого соединения, в которое входит определяемый компонент. Для этого навеску вещества растворяют в том или ином растворителе, обычно воде, осаждают с помощью реагента, образующего с анализируемым соединением малорастворимое соединение с низким значением ПР. Затем после фильтрования осадок высушивают, прокаливают, взвешивают. По массе вещества находят массу определяемого компонента и проводят расчет его массовой доли в анализируемой навеске.
Имеются разновидности
СО32- + 2Н+ Û Н2СО3 Û Н2О + СО2
Количество выделившегося СО2 можно определить по изменению массы вещества, например СаО, с которым реагирует СО2.
Одним из основных недостатков гравиметрического метода является его трудоемкость и относительно большая продолжительность. Менее трудоемким является электрогравиметрический метод, при котором определяется металл, например медь, осаждают на катоде (платиновой сетке)
Cu2+ + 2e- = Cu
По разности массы катода до и после электролиза определяют массу металла в анализируемом растворе. Однако этот метод пригоден лишь для анализа металлов, на которых не выделяется водород (медь, серебро, ртуть).
6. Титриметрический анализ
Сущность метода заключается в измерении объема раствора того или иного реагента, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют так называемые титрованные растворы, концентрация которых (титр) известны. Титром называется масса вещества, содержащегося в 1 мл титрованного раствора (г/мл). Определение проводят способом титрования, т.е. постепенного приливания титрованного раствора к раствору анализируемого вещества, объем которого точно измерен. Титрование прекращается при достижении точки эквивалентности, т.е. достижения эквивалентности реагента титруемого раствора и анализируемого компонента.
Существует несколько
Информация о работе Физико-химические методы анализа веществ