Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 12:09, контрольная работа
В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания.
Химическая идентификация (качественный анализ) и измерения (количественный) анализ являются предметом специальной химической науки – аналитической химии.
Аналитическими являются те реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс связан с выпадением или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ.
В основе кислотно-основного титрования лежит реакция нейтрализации
Н+ + ОН- Û Н2О
Метод позволяет определить
концентрацию кислоты или катионов,
гидролизирующихся с
НСО3- + Н+ Û Н2О + СО2
В точке эквивалентности желтая окраска индикатора переходит в бледно-розовую. Расчет производится по уравнению закона эквивалентов
Сэк.НСО3-·V1= Сэк.HCl·V2,
Где V1,V2 – объемы анализируемого и титрованного растворов; Сэк.HCl - нормальная концентрация эквивалентов вещества HCl в титрованном растворе; Сэк.НСО3- -определяемая молярная концентрация эквивалентов ионов НСО3- в анализируемом растворе. При осадительном титровании анализируемый раствор титруется реагентом, образующим с компонентом титрованного раствора малорастворимое соединение. Точка эквивалентности определяется с помощью индикатора, образующего с реагентом окрашенное соединение, например, красный осадок Ag2CrO4 при взаимодействии индикатора К2CrO4 с избытком ионов Ag+ при титровании раствора хлорида раствором нитрата серебра.
7. Комплексометрическое титрование
При комплексонометрическом
титровании определяемый компонент
в растворе титруется раствором
комплексона, чаще всего
8. Окислительно-восстановительное титрование
Данный способ заключается в титровании раствора восстановителя титрованным раствором окислителя или в титровании раствора окислителя титрованным раствором восстановителя. В качестве титрованных растворов окислителей нашли применение растворы перманганата калия КМпО4 (перманганатометрия), дихромата калия К2Сг207 (дихроматометрия), иода 12 (иодометрия). При перманганатометрическом титровании в кислой среде Мп (VII) (малиновая окраска) переходит в Мп (II) (бесцветный раствор). Например, перманганатометрическим титрованием можно определить содержание нитритов в растворе.
2КМпО4 + 5KNO2 + 3H2SO4 = 2MnSO4 + K2SO4 + 5KNO3 + 3H2O
Итак, существует большое число разновидностей количественного химического анализа, позволяющих определять разнообразные вещества в широких пределах концентраций. Среди химических методов анализа наиболее распространены титрометрические и гравиметрические методы.
9. Инструментальные методы анализа
Инструментальные метода анализа обладают многими достоинствами: быстротой анализа, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Остановимся на некоторых методах, основанных на законах и принципах, рассмотренных ранее в данном курсе химии.
10. Электрохимические методы
К наиболее применимым электрохимическим
методам анализа относятся
;
Соответственно по значению потенциала можно судить о концентрации ионов. Измерительная ячейка состоит из измерительного (индикаторного) электрода и электрода сравнения, который не чувствителен к определяемому веществу.
Полярографический метод предложен чешским ученым Я. Гейеровским в 1922 г. В этом методе строят кривые напряжение-ток для ячейки, у которой два, обычно ртутных, электрода. Один электрод капающий, второй электрод неподвижный с большой площадью поверхности. В ячейку заливается анализируемый раствор. При прохождении тока анализируемый ион осаждается на капле ртути и растворяется в этой капле:
Мn+ + nе + Hg = M (Hg)
Напряжение ячейки определяется прежде всего потенциалом капающего электрода, на котором возникает значительная концентрационная поляризация, так как он имеет небольшую площадь поверхности и соответственно высокую плотность тока. Восстановление его ионов протекает в режиме предельного тока, которое для капающего электрода имеет выражение:
Inv = K1D1/2m2/3t1/6c = K2c,
где К\ и К2 - константы; D - коэффициент диффузии; т - масса капли ртути; t - время образования капли; с - концентрация анализируемого металла в растворе.
Потенциал ртутного электрода определяется природой разряжающихся ионов и током, зависящим от концентрации ионов:
,
где Е1/2 - потенциал полуволны, определяемый природой ионов; I – ток, Iпр - предельный ток Если в растворе присутствует один разряжающийся ион, то полярографическая кривая (полярограмма) имеет одну волну, при наличии нескольких ионов - несколько волн (рис. .1).
Рис.1. Полярограмма раствора,
содержащего несколько
По значению потенциала полуволны определяется вид ионов, а по величине предельного тока - их концентрация. Таким образом полярографический метод позволяет определять концентрацию нескольких ионов в растворе.
Кондуктометрия. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.
Хроматографический анализ. Анализ основан на хроматографии, позволяющей разделять двух- и многокомпонентные смеси газов, жидкостей и растворенных веществ методами сорбции в динамических условиях. Анализ производится с помощью специальных приборов - хроматографов. Разработано несколько методов анализа, которые классифицируются по механизму процесса и природе частиц (молекулярная, ионообменная, осадительная, распределительная хроматография) и по формам применения (колоночная, капиллярная, тонкослойная и бумажная). Молекулярная хроматография основана на различной адсорбируемости молекул на адсорбентах, ионообменная хроматография - на различной способности к обмену ионов раствора. В осадительной хроматографии используется различная растворимость осадков, образуемых компонентами анализируемой смеси при взаимодействии с реактивами, нанесенными на носитель. Распределительная хроматография базируется на различном распределении веществ между двумя несмешивающимися жидкостями. Молекулярная (жидкостная адсорбционная), ионообменная и осадительная хроматография обычно проводятся в хроматографических колонках соответственно с адсорбентом, ионообменным материалом или инертным носителем с реагентом. Распределительная хроматография, как правило, выполняется на бумаге или в тонком слое адсорбента. К достоинствам хроматографического метода анализа относятся быстрота и надежность, возможность определения нескольких компонентов смеси.
11. Оптические методы анализа
Эти методы основаны на измерении
оптических свойств веществ и
излучений, взаимодействия электромагнитного
излучения с атомами или
Методы, основанные на изучении спектров излучения получили название эмиссионных спектральных методов анализа. В методе эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000 - 15000°С). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. Проходя через спектрограф, излучение разлагается на компоненты в виде спектра цветных линий. Сравнение этого спектра со справочными данными о спектрах элементов позволяет определить вид элемента, а по интенсивности спектральных линий — количество вещества. Метод дает возможности определять микро- и ультрамикро-количества вещества, анализировать несколько элементов, причем за короткое время.
Разновидностью эмиссионного анализа является эмиссионная пламенная фотометрия, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени - о концентрации вещества. Анализ выполняют с помощью прибора - пламенного фотометра. Метод в основном используется для анализа щелочных, щелочноземельных металлов и магния.
Методы, основанные на свечении анализируемого вещества под воздействием ультрафиолетовых (фотолюминесценция), рентгеновских (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей называются люминесцентными. Некоторые вещества обладают люминесцентными свойствами, другие вещества могут люминесцировать после обработки специальными реактивами. Люминесцентный метод анализа характеризуется очень высокой чувствительностью (до 10-10 – 10-13 г люминесцирующих примесей). Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, получили название абсорбционно-спектральных. При прохождении света через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.
В соответствие с законом Бугера-Ламберта-Бера зависимость изменения интенсивности потока света, прошедшего через раствор, от концентрации окрашенного вещества в растворе с, выражается уравнением
Ig (Io/I) = elC,
где Io и I - интенсивность потока света, падающего на раствор и прошедшего через раствор; e - коэффициент поглощения света, зависящий от природы растворенного вещества (молярный коэффициент поглощения); l - толщина слоя светопоглощающего раствора. Измерив изменение интенсивности потока света, можно определить концентрацию анализируемого вещества. Определение ведут с помощью спектрофотометров и фотоколориметров. В спектрофотометрах используют монохроматическое излучение, в фотоколориметрах - видимый свет. Сравнивают полученные при измерении данные с градуированными графиками, построенными на стандартных растворах. Если измеряют поглощение лучей атомами определяемого компонента, которые получают распылением раствора анализируемого вещества в пламени горелки, то метод называют атомно-абсорбционным (атомно-абсорбционная спектроскопия). Метод позволяет анализировать вещества в очень малых количествах.
Оптический метод, основанный на отражении света твердыми частицами, взвешенными в растворе, называется нефелометрическим. Анализ проводится с помощью приборов нефелометров.
Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.
Информация о работе Физико-химические методы анализа веществ