Флотация и флотореагенты

Автор работы: Пользователь скрыл имя, 11 Апреля 2012 в 20:43, реферат

Описание работы

1 ОПРЕДЕЛЕНИЕ ФЛОТОРЕАГЕНТОВ И ИХ КЛАССИФИКАЦИЯ
2 СПОСОБЫ ПОЛУЧЕНИЯ ФЛОТОРЕАГЕНТОВ
3 ИДЕИ И РАЗРАБОТКИ ПОЛУЧЕНИЯ ФЛОТОРЕАГЕНТОВ В КАЗАХСТАНЕ

Файлы: 1 файл

рефер.doc

— 296.50 Кб (Скачать файл)


1 ОПРЕДЕЛЕНИЕ ФЛОТОРЕАГЕНТОВ И ИХ КЛАССИФИКАЦИЯ

 

Современное флотационное обогащение основано на применении флотационных реагентов (флотореагентов).

Флотореагенты — химические соединения, способствующие избирательному прилипанию пузырьков воздуха к минеральным частицам и осуществлению флотации определенных компонентов.

В зависимости от целевого назначения флотореагенты делят на три класса — собиратели, пенообразователи, регуляторы. Результаты флотационного обогащения в значительной степени определяются реагентным режимом флотации — ассортиментом и способом применения реагентов; один и тот же результат флотации может быть получен при различных реагентных режимах. Реагентный режим флотации преимущественно определяется типом и характеристикой полезного ископаемого, степенью его измельчения и кондициями, предъявляемыми к продуктам обогащения.

Простейший реагентный режим определяется дозировкой одного пенообразователя или реагента со смешанными функциями собирателя-пенообразователя. В современной практике флотации такие режимы редки.

Обычно при флотации одновременно применяют несколько реагентов, действие которых взаимосвязано и зависит от концентрации каждого из них. Превышение сверх необходимого расхода реагента одного класса требует повышения расхода реагентов других классов и может привести к ухудшению технологических показателей. Минимально возможные расходы реагентов обеспечивают наименьшие затраты на переработку минерального сырья и лучшие результаты флотации. Необходимый расход реагентов определяют с помощью лабораторных флотационных опытов, уточняют в полупромышленных и промышленных условиях.

Флотоактивность реагентов может быть повышена с помощью физических, химических и др. методов — эмульгирование, электрохимическое окисление, ультразвуковая, тепловая и бактериальная обработки, смешивание разных реагентов, подача реагента в парообразном состоянии или в виде аэрозоля и др. Использование физических, химических и др.методов воздействия на Флотореагенты и их водные растворы способствует повышению технико-экономических показателей флотации (снижение расхода реагентов, увеличение извлечения ценных компонентов, улучшение качества концентратов).

Наряду с применением флотореагентов трех классов (собиратели, пенообразователи, регуляторы) и различного сочетания реагентов внутри каждого класса совершенствование флотации минерального сырья во многом определяют технологические приемы, включающие применение сочетаний флотореагентов различных классов, методы обработки пульпы реагентами, методы обработки реагентов перед флотацией, комбинации флотационных методов на основе применения реагентов и нефлотационных операций. Эти технологические приемы условно отнесены к группе «Способы флотации» и дополняют каталог флотационных реагентов.

 

1.1 Собиратели

Собиратели — органические вещества, закрепляющиеся преимущественно на поверхности раздела твердое — жидкость.

Назначение собирателей — гидрофобизация минеральной поверхности (понижение ее смачиваемости водой), увеличение скорости и прочности прилипания частиц к пузырькам воздуха.

Гидрофобизация минералов основана на физико-химических процессах образования поверхностных гидрофобных соединений. При подборе селективных реагентов-собирателей исходят из представлений о химическом взаимодействии собирателя с ионами кристаллической решетки минерала (окислительно-восстановительные и обменные химические реакции, реакции комплексообразования).

Молекулы или ионы собирателей (за исключением чистых углеводородов и некоторых др.) являются полярно-аполярными (дифильными). Полярная часть собирателя, обладая сродством к минералу, определяет прочность закрепления реагента на минеральной поверхности и селективность его действия на различные минералы.

При подборе селективных собирателей для флотации металлических полезных ископаемых руководствуются сродством некоторых органических соединений к металлам и проводят допускаемую аналогию между избирательностью взаимодействия органических реагентов с катионами металлов в растворе и кристаллической решетке минерала (предполагается, что на поверхности минерала имеются ненасыщенные связи). Многие собиратели содержат те же функциональные группы, что и используемые в аналитической химии органические соединения (металлы как объекты флотации и аналитических определений совпадают): ксантогенаты, дитиофосфаты, диалкилтиокарбаматы (в практике обогащения «диалкилтионо-карбаматы»), тиомочевина , ветлужское масло и др.

В качестве собирателей эффективны комплексообразующие реагенты, избирательно образующие хелаты с ионами тяжелых металлов (гидрофобизация основана на взаимодействии хелатообразующих группировок с ионами металлов в кристаллической решетке минерала с образованием прочных нерастворимых комплексов).

Поиск новых селективных собирателей рекомендуется проводить среди хелатообразующих органических соединений, содержащих электронодонорные атомы азота, кислорода, серы, фосфора и галоидов. Целенаправленный выбор лигандов (хелатообразующая группа атомов) позволяет разрабатывать реагенты заданной структуры с определенной вероятностью их флотационной активности.

Рекомендуемые направления изысканий в области реагентов-собирателей:

  первичные собиратели для прямой или обратной флотации основного компонента (нескольких компонентов, в том числе сопутствующих);

  дополнительные собиратели (способствуют снижению расхода основного собирателя и повышению извлечения флотируемого компонента, особенно частиц крайних размеров — крупных и шламистых);

  сочетания (смеси) собирателей (особенно различной природы);

  расширение области флотационного применения того или иного собирателя;

  дешевые заменители стандартных реагентов на базе отходов различных производств;

  повышение эффективности действия собирателей различными методами (подача в виде раствора в водонесмешивающемся органическом растворителе, добавки поверхностно-активных веществ, электрохимическая, ультразвуковая, тепловая, бактериальная обработка и пр.).

Среди ионогенных различают анионные собиратели (гидрофобизирующий ион — анион) и катионные (гидрофобизирующий ион — катион).

В зависимости от состава и структуры полярной части наиболее распространенные анионные собиратели условно делят на два типа — сульфгидрильные (в состав полярной части входит двухвалентная сера, связывающая анион собирателя и ; поверхность минерала) и оксигидрильные (анион собирателя и минеральная поверхность связываются через атом кислорода). Аполярная часть сульфгидрильных собирателей содержит 2—6 атомов углерода, оксигидрильных—12—18.

В зависимости от состава и структуры полярной части катионные собиратели делят на два типа — первичные алифатические амины и их соли (с полярной группой на основе аммиака) и соли четырехзамещенного аммония (с полярной группой на основе аммония). Аполярная часть катионных собирателей содержит 12—18 атомов углерода.

Из неионогенных собирателей в практике флотации применяют аполярные масла и нерастворимые в воде серосодержащие маслообразные реагенты.

Собирательная способность реагентов зависит от их природы, удельного расхода и условий применения. Выбор собирателя преимущественно определяется характером минерального сырья и степенью его измельчения.

Для флотации сульфидных и сульфидизированных руд тяжелых цветных металлов наиболее эффективны серосодержащие собиратели—сульфгидрильные и производные тиокарбаминовых кислот (в практике преимущественно используют ксантогенаты, дитиофосфаты, тионокарбаматы и дитиокарбаматы). Эти собиратели неактивны или малоактивны по отношению к кварцу, алюмосиликатам и минералам с щелочными или щелочноземельными катионами в кристаллической решетке.

При флотации окисленных минералов руд редких, черных и некоторых цветных металлов, также при флотации горнохимического сырья наиболее эффективны кислородсодержащие (карбоновые кислоты, эфиры и их производные), азотсодержащие (амины', четвертичные аммониевые основания, соли аммония, гидроксамовые кислоты и их производные) и некоторые серосодержащие (органические производные серной кислоты) собиратели.

При флотации кварца, сильвинита, некоторых окисленных минералов цветных и редких металлов (смитсонит, каламин, вольфрамит и др.) применяют азотсодержащие (амины, четвертичные аммониевые основания, соли аммония) и кислородсодержащие (карбоновые кислоты и их производные) собиратели.

При флотации всех полезных ископаемых перспективны собиратели со смешанными функциональными группами (особенно амиды и тиоамиды, аминокислоты, аминоэфиры).

Оксигидрильные и катионные собиратели можно применять при флотации сульфидных руд тяжелых цветных металлов; однако по селективности действия они значительно уступают в этом случае сульфгидрильным собирателям и производным тиокарбаминовых кислот и не могут конкурировать с ними.

Неионогенные собиратели — основные реагенты при флотации природно- гидрофобных минералов (графит, сера, молибденит и др.); в качестве дополнительных собирателей их применяют при флотации самых разнообразных минералов (вводят в дополнение к ионогенным собирателям).

При грубом измельчении минерального сырья необходимы более сильные собиратели (с большей длиной аполярной части), чем при тонком. Флотацию частиц крайних размеров (крупных и тонких) интенсифицируют добавки аполярных масел. Эффективны реагентные режимы флотации на основе применения относительно слабых реагентов-собирателей. Для обеспечения более высокого извлечения металлов их рекомендуется использовать в сочетании с более сильными собирателями при очень малых расходах. Поддержание расхода собирателя на минимально необходимом уровне способствует селективному разделению руды на компоненты с высокими показателями.

Для современной практики характерно применение сочетания реагентов собирателей (в одном и том же и различных циклах флотации).

Дозируют собиратели в измельчение, операцию перемешивания перед флотацией (кондиционирование), непосредственно во флотацию; в начало операции рекомендуется подавать не менее 60—80 % общего расхода реагента.

 

1.2 Пенообразователи

Пенообразователи — поверхностно-активные органические вещества, адсорбирующиеся преимущественно на поверхности раздела жидкость — газ.

Назначение пенообразователей — способствовать образованию в объеме пульпы воздушных пузырьков с определенными свойствами, а на поверхности пульпы — достаточно устойчивого пенного слоя необходимого строения.

Молекулы пенообразователей являются полярно-аполярными (дифильными). Полярная часть может быть представлена гидроксилом, карбонилом, сульфогруппой, аминогруппой и др.

Адсорбция пенообразователей на разделе жидкость — газ подчиняется уравнению Гиббса.

Поверхностное натяжение чистых пенообразователей и их растворов значительно меньше, чем поверхностное натяжение воды. С повышением концентрации пенообразователя поверхностное натяжение раствора понижается, поверхностно-активное вещество переходит в поверхностный слой, обусловливая уменьшение свободной энергии (движущая сила адсорбции). В предельном случае при добавлении к воде поверхностно-активных веществ молекулы воды полностью удаляются с поверхности раздела газообразной и жидкой фаз и замещаются молекулами менее полярного вещества, например терпинеола. При этом сила межмолекулярного взаимодействия поверхностного слоя жидкости и воздуха увеличивается, поверхностное натяжение уменьшается.

При флотационных концентрациях пенообразователей понижение поверхностного натяжения составляет 30—30 мкН/см и адсорбционный слой на поверхности пузырьков в объеме пульпы является ненасыщенным.

Концентрация пенообразователя в пенном слое значительно больше, чем в объеме пульпы (выше уровня пульпы пузырьки разрушаются и пена непрерывно обогащается новыми порциями реагента).

Адсорбируясь на границе раздела вода — воздух, поверхностно-активные вещества ориентируются полярной группой в водную фазу. Взаимодействуя с полярными группами молекул пенообразователя, диполи воды гидратируют их, создавая каркас известной жесткости и способствуя упрочению поверхностного адсорбционного слоя пузырька воздуха.

Чем больше гидратированы молекулы пенообразователя, тем медленнее стекает вода с поверхности пузырька в пенном слое, тем устойчивее пена. Слишком хрупкие и устойчивые пены не являются оптимальными для флотации. В отсутствие пенообразователя пузырьки воздуха разрушаются практически сразу после достижения ими поверхности. Пена должна обладать свойствами, обеспечивающими вторичную концентрацию флотируемого минерала.

Структура флотационной пены зависит, при прочих равных условиях, от характера флотореагентов и крупности минеральных зерен.

Различают три типа пен: пленочно-структурные, агрегатные и пленочные. Тип пены можно определить по виду ее распада и содержанию воды в продуктах распада

Пленочно-структурная пена при флотации частиц обычной крупности встречается наиболее часто. Она характеризуется значительной обводненностью, имеет относительно большую высоту и повышенное содержание увлеченных потоком частиц пустой породы.

Агрегатными называют плотные минерализованные пены, содержащие относительно небольшую долю воды. Образованию агрегатных пен способствуют относительно крупные флотирующиеся частицы, а также добавки аполярных масел. Они могут получаться также при распаде обычных пленочно-структурных пен. Агрегатным пенам часто соответствует максимальная скорость флотации.

Информация о работе Флотация и флотореагенты