Флотация и флотореагенты

Автор работы: Пользователь скрыл имя, 11 Апреля 2012 в 20:43, реферат

Описание работы

1 ОПРЕДЕЛЕНИЕ ФЛОТОРЕАГЕНТОВ И ИХ КЛАССИФИКАЦИЯ
2 СПОСОБЫ ПОЛУЧЕНИЯ ФЛОТОРЕАГЕНТОВ
3 ИДЕИ И РАЗРАБОТКИ ПОЛУЧЕНИЯ ФЛОТОРЕАГЕНТОВ В КАЗАХСТАНЕ

Файлы: 1 файл

рефер.doc

— 296.50 Кб (Скачать файл)

Пленочные пены аналогичны агрегатным, но имеют небольшую толщину; получаются при флотации крупных гидрофобных частиц небольшой плотности, например угля.

Аполярная группа пенообразователя, замещающая молекулы воды на поверхности раздела фаз и обусловливающая уменьшение поверхностного натяжения, должна быть достаточной длины, чтобы выталкиваться из воды. У пенообразователей полярная группа находится в определенной связи с длиной углеводородного радикала. Например, спирты с числом атомов углерода в молекуле до 4 не являются пенообразователями, как и спирты, содержащие более 8 атомов углерода (в первом случае превалирует взаимодействие группы ОН с водой над взаимодействием аполярного радикала с воздухом, во втором — наоборот).

Пенообразователи оказывают следующее действие: способствуют диспергированию воздуха во флотационной машине; препятствуют коалесценции воздушных пузырьков; снижают скорость подъема пузырьков воздуха в пульпе (приблизительно в 2 раза), способствуя их лучшей минерализации; увеличивают силу прилипания пузырьков к флотирующимся минеральным частицам; способствуют образованию трехфазной флотационной пены определенных свойств и характера.

Пенообразующая способность реагентов зависит от их природы и концентрации. В ряду нормальных спиртов наибольшим пенообразующим действием обладает октиловый спирт, затем гептиловый и гексиловый; в ряду низших фенолов — крезол, затем ксиленол и фенол. Наиболее сильные пенообразователи из применяемых в практике — ТЭБ и ОПСБ. Чем сильнее пенообразователь, тем меньший его расход требуется для флотации. Расход пенообразователя должен поддерживаться на минимально необходимом уровне во избежание снижения качества концентратов и увеличения объема флотируемой пульпы из-за повышенного выхода промпродукта.

Каждый пенообразователь индивидуально влияет на характер распределения воздушных пузырьков в пульпе по крупности. Наиболее флотационно активны пузырьки диаметром 0,6— 1,2 мм. Крупные пузырьки обладают достаточной подъемной силой для извлечения крупных минеральных частиц и сростков, но вследствие больших скоростей подъема их время контакта с частицами невелико и они малоэффективны. Тонкие и сверхтонкие пузырьки находятся в пульпе значительное время, способствуют прикреплению к частицам пузырьков более крупных | размеров, но сами по себе плохо флотируют минеральные частицы даже средней крупности.

С уменьшением размера воздушных пузырьков возрастает стабильность пены. Флотирующиеся минеральные частицы также стабилизируют пену. Наоборот, тонкие гидрофобные осадки, образующиеся в пульпе при взаимодействии собирателя с ионами тяжелых металлов, оказывают пеногасящее действие. Растворение гидрофобных осадков или их превращение в гидрофильные под действием регуляторов приводит к усилению пенообразования (например, пенообразование увеличивают добавки хромпика в случае образования ксантогенита свинца, добавки сернистого натрия в случае образования ксантогенатов тяжелых цветных металлов и др.; добавка сернистого натрия при расходе 5—10 г/т в основную флотацию чисто сульфидной руды позволяет иногда сократить на 25—30 % расход пенообразователя).

Для флотации минерального сырья предложено более двухсот пенообразователей.

По классам химических соединений реагенты-пенообразователи делят на спирты, фенолы, кислоты, эфиры, гетероциклические, кремнийорганические и серосодержащие соединения; в группу «Разные» включены используемые в качестве пенообразователей единичные представители других классов органических соединений и реагенты сложного и неустановленного состава (побочные продукты и отходы химических производств, продукты взаимодействия различных органических соединений и т. п.).

Эффективность флотационного применения пенообразователей зависит от рН пульпы. Условно пенообразователи можно разделить на три группы: кислые, обладающие максимальным пенообразующим действием в кислой среде (фенолы); основные, обладающие максимальным пенообразующим действием в щелочной среде (некоторые гетероциклы); нейтральные, пенообразующее действие которых практически не зависит от рН (спирты, эфиры). Практически по масштабам потребления наиболее важны нейтральные пенообразователи.

Кроме того, можно выделить группу реагентов, выполняющих при флотации роль модификаторов пены (используют для изменения устойчивости и структуры пены). В качестве модификаторов пены рекомендуются древесный креозот, синтекс Л, масло Баррет, эмульсол Х-1, эксфоум 636 гидропероксиды.

Выбор пенообразователя зависит от многих факторов, в первую очередь определяется характером минерального сырья и степенью его измельчения.

В общем случае при флотации полиметаллических руд для лучшего разделения необходимо применять слабые пенообразователи при максимально возможном расходе, а при флотации монометаллических руд — сильные пенообразователи, что должно способствовать повышению скорости флотации. Сильные пенообразователи рекомендуется также применять в случае более грубого рудного измельчения, особенно при использовании углеводородных масел, оказывающих пеногасящее действие.

Хрупкую, сравнительно малоустойчивую пену обеспечивают синтетические спиртовые пенообразователи, в частности, высшие алифатические спирты. Сравнительно устойчивую, но достаточно подвижную пену образует крезол. Наиболее устойчивую пену, в которой удерживается большая часть пустой породы, образуют древесно-смоляные масла. В случае повышенной обводненности пены хорошие результаты может дать увеличение времени ее отстаивания за счет регулировки работы пекогона (уменьшение частоты вращения и числа лопастей и т. п.).

Более точное ведение технологического процесса и повышение его показателей может обеспечить применение комбинации из двух пенообразователей либо сочетание двух различных пенообразователей в одном цикле, либо использование разных пенообразователей в разных циклах флотации.

Дозируют пенообразователи обычно непосредственно во флотацию или в операцию перемешивания перед флотацией. В начальные операции рекомендуется подавать не менее 60—70 % общего расхода реагента.

 

1.3 Регуляторы

Регуляторы, — флотационные реагенты, применяемые в дополнение к собирателям и пенообразователям для повышения селективности флотации или повышения извлечения минералов. Регуляторами флотации могут быть как неорганические, так и органические вещества.

Для флотации минерального сырья предложено около четырехсот регуляторов.

В определенных условиях один и тот же регулятор может выполнять различные функции.

В зависимости от целевого назначения в процессе флотации в каждом конкретном случае различают регуляторы активирующего, депрессирующего или подавляющего действия и регуляторы среды.

Регуляторы активирующего действия (активаторы) применяют при флотации минералов, извлечение которых одним собирателем и пенообразователем затруднено.

Регуляторы депрессирующего действия (депрессоры, или подавители) применяют при флотационном разделении минералов, когда их флотируемость мало или совсем недостаточно отличается друг от друга с данным собирателем.

Регуляторы среды применяют для создания оптимального рН пульпы, нейтрализации вредного влияния шламов, коллоидов и растворимых солей.

Активирующее действие регуляторов флотации, способствующее улучшению флотируемости минералов, может быть связано:

  с очисткой поверхности минерала удалением окисленных пленок и шламовых покрытий, а также изменением химического состава поверхностного слоя, например, кислотная обработка ильменита, корунда, топаза, турмалина, вольфрамита, флюорита, берилла, окисленной поверхности пирита и халькопирита;

  адсорбцией ионов, способствующих последующему взаимодействию минерала с собирателем, например, адсорбция катионов меди, свинца, серебра и ртути на сфалерите, иона меди на молибдените, ионов двухвалентного железа и марганца на вольфрамите, ионов тяжелых металлов на силикатах и оксидах, сульфид-иона на окисленных минералах тяжелых цветных металлов;

  осаждением или связыванием в комплексные соединения ионов, затрудняющих закрепление собирателя на поверхности минерала, например, осаждение избытка сернистых и гидросернистых ионов солями тяжелых металлов, связывание ионов циана в малодиссоциированную синильную кислоту снижением рН и др.;

  улучшением пенообразующей способности флотационной суспензии, например, добавка сернистого натрия при наличии в пульпе тонких гидрофобных осадков ксантогенатов тяжелых цветных металлов, добавка конденсированных фосфатов для связывания поливалентных катионов при мыльной флотации и др.;

  изменением электростатического состояния поверхности минерала и строения двойного электрического слоя, приводящих к уменьшению гидратации минеральной поверхности и способствующих закреплению собирателя;

  изменением рН пульпы.

Депрессирующее действие регуляторов, способствующее селективной флотации минералов, может быть связано:

  с вытеснением иона собирателя, снижением или предотвращением закрепления собирателя на минеральной поверхности, например, действие гидроксильных ионов, цианида и сернистого натрия при флотации полиметаллических руд;

  связыванием активирующих ионов на поверхности минерала и в объеме пульпы, например, предотвращение активации кварца ионами двухвалентного железа и кальция за счет их осаждения добавками соды, жидкого стекла и др., предотвращение активации сфалерита связыванием ионов меди сернистым натрием, цианидом, сульфитом натрия, ионитами;

  переводом собирателя в труднорастворимые соединения в объеме пульпы, например, образование осадков при взаимодействии анионов ксантогенатов и карбоновых кислот с ионами кальция, магния и катионами тяжелых металлов, перевод ксантогенатов в диксантогениды с помощью перекиси водорода и др.;

  образованием на минерале покрытий, препятствующих прилипанию к пузырьку воздуха (шламы, мицеллы жидкого стекла, крахмал, гипс и др.);

  растворением минеральной поверхности с удалением активирующих ионов и молекул собирателя (действие кислот и щелочей на некоторые несульфидные минералы);

  пептизацией шламов пустой породы, например, действие жидкого стекла, конденсированных фосфатов и др.;

  изменением рН пульпы.

Действие регуляторов среды связано с изменением рН пульпы, оказывающего сложное влияние на состояние растворенных в пульпе веществ и межфазные поверхности. При изменении рН пульпы изменяются свойства и растворимость как флотореагентов, так и минералов. В зависимости от реагентного режима и минерального состава пульпы изменение рН может как активировать, так и подавлять флотацию минералов. Наиболее чувствительны к изменению рН те минералы, для которых ионы водорода и гидроксила являются потенциалопределяющими (кварц, силикаты, гидроксиды). При флотации сульфидов тяжелых цветных металлов с сульфгидрильными собирателями для каждого минерала характерен критический рН, определяющий границу флотируемости. Изменяя рН, можно поддерживать определенную концентрацию ионной и молекулярной форм собирателя и подавителя, регулировать селективность флотации. Щелочные регуляторы предотвращают также отрицательное действие ионов тяжелых металлов на флотацию, переводя их в осадок в виде гидратов. Пептизируя или флокулируя шламы и коллоиды, регуляторы снижают их тенденцию поглощать реагенты и образовывать покрытия на минералах флотационной крупности.

В практике флотации руд цветных металлов из регуляторов активирующего действия наиболее распространены медный купорос (активирует сфалерит, марматит, в ряде случаев — сульфиды железа и арсенопирит) и сернисттый натрий (активирует карбонаты и сульфаты свинца, карбонаты меди и др.), реже применяют нитрат свинца (активирует стибнит, также сульфиды меди, депрессированные цианидом), сульфат аммония (активирует сфалерит) и некоторые и др.

Номенклатура регуляторов-подавителей в практике флотации минерального сырья включает значительный ассортимент реагентов. Наиболее часто применяют цианиды, сульфид и гидросульфид натрия, цинковый и железный купорос, сульфоксидные соединения, ферро- и феррицианиды, жидкое стекло, кремнефтористый натрий, конденсированные фосфаты, бихроматы, известь, различные окислители, карботиосульфат, КМЦ, бисульфит натрия, декстрин и др.

Эффективны сочетания реагентов-регуляторов и их применение в комбинации с подачей в пульпу различных газов — азота, кислорода, углекислого и сернистого.

В качестве регуляторов среды чаще всего применяют известь, соду, едкий натр, серную и сернистую кислоты. Многие регуляторы активирующего и депрессирующего действия одновременно являются регуляторами среды (медный купорос, сернистый натрий и др.).

Расходы реагентов-регуляторов во избежание ухудшения результатов флотации и увеличения расхода флотореагентов других классов должны строго поддерживаться на минимально необходимом уровне.


2 СПОСОБЫ ПОЛУЧЕНИЯ ФЛОТОРЕАГЕНТОВ

 

В данном разделе будут кратко рассмотрены современные способы получения некоторых флотореагентов, таких как:

1. дибутилдитиофосфата натрия для обогащения медно-молибденовых, медно-цинковых, свинцово-цинковых и других типов руд;

2. реагента для флотации сульфидных руд, содержащего ксантогенат;

3. неонола для флотации углей

 

2.1 Способ получения флотореагента - дибутилдитиофосфата натрия

Способ относится к флотации и может быть использовано при производстве флотационных реагентов, используемых при обогащении медно-молибденовых, медно-цинковых, свинцово-цинковых и других типов руд.

Известен способ получения флотореагента - алкилового аэрофлота, включающий тиофосфирование спирта по реакции:

4ROH+P2S5=2(RO)2PSSH+H2S

и нейтрализацию по реакции

(RO)2PSSH+NaOH=(RO)2PSSNa+Н2O

Известный способ не обеспечивает высокого выхода целевого продукта из-за неполного взаимодействия исходных компонентов на стадии тиофосфирования спирта (выход диалкилдитиофосфорной кислоты составляет 79-89%).

Информация о работе Флотация и флотореагенты