Автор работы: Пользователь скрыл имя, 12 Мая 2015 в 13:09, реферат
Однако необходимо помнить, что для организма вреден не только недостаток, но и избыток биогенных элементов, так как при этом нарушается гомеостаз. Например, при поступлении избытка марганца с пищей в плазме повышается уровень меди, а в почках он снижается. Повышение содержания молибдена в продуктах питания приводит к увеличению количества меди в печени. Избыток цинка вызывает угнетение активности железосодержащих ферментов (антагонизм Zn и Fe).
1.Введение…………………………………………………………………..……..3
2.Общая характеристика, краткие сведения об истории открытия
элементов и их распространенности в природе………....………………...……5
3. Свойства простых веществ: реакции с кислотами……………………….…..14
4. Важнейшие соединения хрома (III) и их химические свойства………..…..17
5. Соединения Ме (VI): молибденил- и вольфрамил-ионы; галогениды и оксигалогениды, оксиды, анионные комплексы………………………………20
6. Окислительные свойства хроматов и дихроматов……………………….…29
7. Медико-биологическое значение соединений хрома,
молибдена, вольфрама……………………………………………………….…..31
8.Заключение…………………………………………………………….……….34
9.Список используемой литературы……………………………..……………..35
Соединения хрома(II) являются сильными восстановителями, в противоположность дигалогенидам молибдена, довольно устойчивым к действию окислителей.
Тригалогениды
Тригалогениды хрома, молибдена и вольфрама также существенно различаются по строению и свойствам. Наиболее известен хлорид хрома(III), или хлорный хром, СгСlз, образующийся в виде фиолетовых чешуйчатых кристаллов при хлорировании хрома или смеси его оксида углем. Это вещество может быть сублимировано в токе хлора при температуре 600 ОС,
25
но при нагревании до этой температуры в инертной атмосфере или в вакууме частично разлагается на дихлорид и хлор.
Тетрагалогениды
Из тетрагалогенидов наиболее устойчивы фториды, известные для всех трех элементов. Хлорид и бромид хрома (IV) существуют в газовой фазе в равновесии 2СгХз + Х2 СгХ4.
В виде индивидуального вещества они не выделены, хотя тетраэдрические молекулы CrCl4 стабилизированы в аргоновой матрице.
Тетрахлорид молибдена MoC14 - черное нелетучее вещество, разлагающееся при температуре выше 1300 C. Он существует в виде нескольких модификаций. Известен также тетрабромид молибдена. Все тетрагалогениды за исключением тетрафторидов легко гидролизуются и при этом диспропорционируют:
2МХ4 + Н2О = МХЗ + МОХз + 2НХ
на воздухе окисляются. Частичный сольволиз проходит также в метаноле:
Из ацетонитрильных растворов WCl4 кристаллизуются молекулярные сольваты WСI4(СНзСN)2·
Пентагалогениды.
Пентафториды, известные для всех трех металлов, представляют собой желтые (MoFs, WFs) или красные (CrFs) легколетучие кристаллические вещества, изоструктурные соответствующим галогенидам ниобия и тантала. Они построены из циклических молекул, в которых четыре октаэдра связаны
26
общими вершинами с помощью мостиков M--F-M. При небольшом нагревании пентафториды молибдена (1650 C) и вольфрама (300 C) испропорционируют:
2MFs = МFб + MF4
С солями щелочных металлов они дают фторидные комплексы. Среди пентахлоридов наиболее изучен MoCls, образующийся в виде черных кристаллов, состоящих из димеров M02Cl1o в виде двух октаэдров [MoC16], соединенных ребрами.
Среди пентахлоридов наиболее изучен Mo2Cl10, образующийся в виде черных кристаллов, состоящих из димеров Мо2Cl10 в виде двух октаэдров, соединенных ребрами.
27
Важнейшие оксохлориды молибдена и вольфрама
Для всех трех элементов
Поскольку двойная связь М =0 очень прочна, оксогалогениды образуются в присутствии даже незначительного количества кислорода и водяного пара. Общим методом их синтеза служит галогенирование оксидов хлором, хлористым тионилом, летучими хлоридами
Сr2O3 + СгСlз->3CrOCl
Низшие оксогалогениды могут быть также получены восстановлением или разложением высших. Для хрома наиболее характерны высшие диоксогалогениды СrО2Х2, известные для всех галогенов, за исключением йода и астата.
Из оксогалогенидов молибдена следует отметить оксохлорид МоОCl3 - темно-коричневые игольчатые кристаллы, состоящие из бесконечных цепей октаэдра [MoOCl5]2- (см. рис.) Эти вещества получают также электрохимическим восстановлением гидратированного оксида молибдена в солянокислом растворе или восстановлением молибдатов иодоводородом в концентрированной НСl:
2(МоОз· Н2О) + 8HCl + 4KCl = 2K2[MoOCls] + C12 + 6Н2О
28
Хроматы и дихроматы –
сильные окислительные. Поэтому
ими широко пользуются для
окисления различных веществ. Окисление
производится в кислом
В кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr+3 или Cr2O2-7, а в щелочной – в виде ионов [Cr(OH)6]3- или CrO2-4. Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие
Cr2O2-7+14H+6eˉ↔2Cr3+7H2O
а в щелочной:
[Cr(OH)6]3-+2OH-↔CrO2-4+4H2O+
Однако, и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно
29
поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.
Приведём несколько
примеров окислительно-
1.При пропускании
K2Cr2O7+3H2S+4H2SO4→Cr2(SO4)3+
2.При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):
K2Cr2O7+14HCl→2CrCl3+3Cl2↑+
3.Если пропускать
диоксид серы через
K2Cr2O7+3SO2+H2SO4→Cr2(SO4)3+K
При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4)2∙12H2O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.
2.Глинка Н.Л. Общая химия: Учебное пособие для вузов/Под ред. А.И.Ермакова и др. – М.: Интеграл-Пресс, 2006. – С. 496-499,511-516
Информация о работе Химия и биологическая роль элементов VI B группы