Комплексные соединения

Автор работы: Пользователь скрыл имя, 05 Декабря 2014 в 19:29, реферат

Описание работы

Комплексные соединения (лат. complexus — сочетание, обхват) или, другими словами, координационные соединения — это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем (центральным атомом или металлоцентром; в современной научной литературе доминирует термин «металлоцентр»), нейтральных молекул или других ионов, называемых лимандами.

Файлы: 1 файл

реф.docx

— 30.67 Кб (Скачать файл)

 

Комплексные соединения (лат. complexus — сочетание, обхват) или, другими словами, координационные соединения — это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем (центральным атомом или металлоцентром; в современной научной литературе доминирует термин «металлоцентр»), нейтральных молекул или других ионов, называемых лимандами.

Комплексные соединения мало диссоциируют в растворе (в отличие от двойных солей). Комплексные соединения могут содержать комплексный малодиссоциирующий анион ([Fe(CN)6]3−), комплексный катион ([Ag(NH3)2]+) либо вообще не диссоциировать на ионы (соединения типа неэлектролитов, например карбониты металлов). Комплексные соединения разнообразны и многочисленны.

Применяются в химическом анализе, в технологии при получении ряда металлов (золота, серебра, металлов платиновой группы и др.), для разделения смесей элементов, например, лантаноидов.

Огромная область применения комплексов переходных металлов — каталитические процессы.

Комплексные соединения играют большую роль в жизнедеятельности организмов; например, гемоглобин, хлорофилл являются комплексными соединениями.

Комплексные (координационные) соединения чрезвычайно широко распространены в живой и неживой природе, применяются в промышленности, сельском хозяйстве, науке, медицине. Так, хлорофилл - это комплексное соединение магния с порфиритами, гемоглобин содержит комплекс железа(II) с порфиритовыми циклами. Многочисленные минералы, как правило, представляют собой координационные соединения металлов. Значительное число лекарственных препаратов содержит комплексы металлов в качестве фармакологически активных веществ, например инсулин (комплекс цинка), витамин B12 (комплекс кобальта), платинол (комплекс платины) и т.д. В широком смысле слова почти все соединения металлов можно считать комплексными соединениями. Основателем координационной теории комплексных соединений является швейцарский химик Альфред Вернер (1866 - 1919); за работы в этой области ему в 1913 году была присуждена Нобелевская премия по химии.

ОБЩАЯ ХАРАКТЕРИСТИКА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ МЕТАЛЛОВ

Комплексные соединения образуют как металлы, так и неметаллы. В дальнейшем мы будем рассматривать в основном комплексные (координационные) соединения металлов. Комплексное соединение (сокращенно - комплекс) состоит из центрального атома металла-комплексообразователя M (здесь не указан его заряд), с которым связаны лиманды L (старое название - адденды). Атом M и лиманды L образуют внутреннюю сферу комплекса (или внутреннюю координационную сферу). Внутренняя координационная сфера обычно при написании формулы соединения заключается в квадратные скобки. Лимандами могут быть нейтральные молекулы (обычно основного характера), отрицательно заряженные анионы (ацидогруппы). Простые положительно заряженные катионы в роли лимандов не выступают. Если внутренняя сфера комплекса несет отрицательный или положительный заряд, то для компенсации этого заряда (поскольку все индивидуальные соединения электронейтральны) необходимы ионы, образующие внешнюю сферу. Во внешней сфере могут находиться не только ионы, но и нейтральные молекулы, очень часто - молекулы воды.

Примеры

1. Рассмотрим комплекс  состава K4 [Fe(CN)6 ] "

" 3H2O - тригидрат гексацианоферрата(II) калия (ферроцианид калия, желтая кровяная соль). Здесь в роли центрального атома металла-комплексообразователя выступает железо(II), в роли лимандов - шесть одинаковых цианогрупп CN-. Вместе атом железа(II) и шесть цианогрупп образуют внутреннюю координационную сферу комплекса, что в написанной выше химической формуле соединения обозначено квадратными скобками. Во внешней сфере в данном случае находятся четыре катиона калия K+ (они компенсируют отрицательный заряд внутренней сферы [Fe(CN)6 ]4-) и три молекулы воды.

2. Рассмотрим теперь комплексы  платины(II) состава транс-[Pt(NH3)2Cl2], [Pt(NH3 )4 ]Cl2 и K2 [PtCl4]. В первом комплексе внешняя сфера отсутствует, поскольку внутренняя координационная сфера электронейтральна. У второго комплекса во внешней сфере имеются два хлорид-иона Cl-, так как внутренняя сфера комплекса [Pt(NH3 )4 ]2 + несет положительный заряд, равный + 2. В третьем комплексе во внешней сфере находятся два катиона калия K+, поскольку внутренняя сфера [PtCl4 ]2 - несет отрицательный заряд.

Иногда в роли внешней сферы одного комплекса выступает внутренняя сфера другого комплекса, например, в соединениях состава

[Pt(NH3)4][PtCl4 ],

[Co(NH3)6][Cr(CN)6],

[Co(NH3 )5NO2 ][Co(NH3 )2(NO2 )4 ]2 и т.д.

Нейтральные молекулы (но не ионы!), находящиеся во внешней сфере, называют (за исключением молекул воды или другого растворителя) клатратными молекулами, а сами такие соединения - клатратными соединениями (соединениями-включениями).

Пример

В комплексе никеля(II) состава NiI2 " 10A, где A - молекула карбамида (мочевины) OC(NH2)2 , на один атом никеля приходятся десять молекул карбамида, однако только шесть из них входят во внутреннюю сферу комплекса; четыре остальные молекулы карбамида и два йодид-иона I- образуют внешнюю сферу. Эти четыре молекулы карбамида являются клатратными молекулами. Состав комплекса в целом можно представить следующим образом: [NiA6]I2 " 4A.

Заметим, что иногда клатратные соединения рассматривают по-иному.

Лиманд L образует с металлом-комплексообразователем M координационную связь различной химической природы (ионная, ковалентная, полярная; по происхождению - донорно-акцепторная, дативная или иной природы). Координационная связь может быть ординарной (одинарной), двойной, тройной. В комплексных соединениях, содержащих во внутренней сфере два атома металла-комплексообразователя, возможно в некоторых случаях существование и четверной связи (одна s-связь, две p-связи и одна d-связь), например, между двумя атомами рения в комплексе [Re2Cl8 ]2- :

 

[Cl4Re ReCl4]2 -.

Это явление объясняется участием в связях валентных d- и даже f-электронов, что невозможно для обычных органических соединений со связями углерод-углерод (только одинарная, двойная или тройная связь).

В дальнейшем координационную связь металл-нейтральный лиманд мы будем обозначать стрелкой, направленной от лиманда к металлу: M L, например, Ag NH3 , Co H2O, Pt P(CH3)3 и т.д. Координационную связь металл-ацидогруппа будем обозначать чертой (без указания или с указанием зарядов): M-L, например, Fe-CN, Ag-S2O3 , Sbv-Cl и т.д.

Заметим, что иногда под координационной связью подразумевают только донорно-акцепторную связь ML. Подобные терминологические разночтения обычно не приводят к недоразумениям, если ясно, о чем идет речь.

Координационное число центрального атома M - это число координационных связей, образуемых атомом металла-комплексообразователя с лимандами. Координационное число может иметь значения 2; 3; 4; 5; 6 и т.д. вплоть до 12 (например, для некоторых соединений редкоземельных металлов). Наиболее часто встречаются координационные числа 2; 4; 6; координационные числа выше 8 встречаются намного реже.

Примеры

1. Координационное число 2:

[NH3 AgINH3 ]+, [Cl-CuI-Cl]-.

 

2. Координационное число 4:

и т.д.

НЕКОТОРЫЕ ТИПЫ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Комплексные соединения классифицируют по-разному. Рассмотрим кратко некоторые типы комплексов.

Внутрикомплексные соединения (ВКС) - координационные соединения металлов с одинаковыми или различными бидентатными (обычно - органическими) ацидолимандами, связанными с одним и тем же атомом металла-комплексообразователя через одну отрицательно заряженную и одну нейтральную донорные группы с образованием одинаковых или различных внутренних металлоциклов (хелатных циклов), не содержащие внешнесферных ионов и являющиеся комплексами-неэлектролитами. Примером ВКС может служить глицинат меди(II) и оксихинолинат цинка:

а также такие практически важные соединения, как комплексы металлов с оксиоксимами, нитрозогидроксиламинами, нитрозофенолами, различными аминокислотами и т.д.

ВКС представляют собой частный случай хелатных комплексных соединений (хелатов) металлов (ХКС), т.е. координационных соединений металлов с одинаковыми или различными отрицательно заряженными или нейтральными полидентатными лимандами, органическими или неорганическими, имеющими один или несколько одинаковых или различных хелатных циклов (термин "хелат" - chelate - означает "клешневидный"). Хелаты, в отличие от ВКС, могут быть комплексами катионного, анионного типа или комплексами-неэлектролитами, содержать во внутренней координационной сфере или только полидентатные, или одновременно один или несколько полидентатных и монодентатные лиманды и иметь (или не иметь) внешнесферные ионы. Различие между ВКС и ХКС иногда (но не всегда) не делается: любые ХКС, содержащие хотя бы один хелатный цикл, нередко называют ВКС. Поэтому в широком смысле слова все ХКС в последнее время относят к ВКС, хотя это не совсем строго. В ХКС один и тот же полидентатный лиманд образует один или несколько хелатных циклов, причем этот лиманд может быть би-, три-, тетра-, пента- или гексадентатным. Так, в комплексах металлов с диметилглиоксимом реализуются хелатные металлоциклы, например, в комплексе никеля(II):

Здесь точками обозначены внутримолекулярные водородные связи. Этот нейтральный комплекс (никельдиметилглиоксим) представляет собой малорастворимое в воде соединение красного цвета; применяется для определения никеля(II).Большую группу хелатных комплексов образуют этилендиамин H2N-CH2-CH2-NH2 (часто для краткости обозначаемый En или en), дающий пятичленные металлоциклы, например, в комплексе платины(II):

Полидентатные (циклообразующие) лиманды образуют в ВКС и ХКС обычно четырех- (сравнительно редко), пяти-, шести-, семичленные металлоциклы. Значительно реже осуществляются трехчленные металлоциклы или хелатные циклы с числом членов более семи. ВКС и ХКС чаще всего образуются при реакциях солей металлов с соответствующими нейтральными исходными лимандами или их солями в растворах в подходящих условиях, а также при реакциях внутрисферного замещения и внутрисферного превращения лимандов. ВКС - обычно малорастворимые в воде, часто - окрашенные вещества, могут экстрагироваться (иногда - избирательно) органическими растворителями, не смешивающимися с водой. ХКС обладают различными растворимостью и окраской, зависящими от природы как металла-комплексообразователя, так и лимандов и внешней сферы. ВКС и ХКС более устойчивы термически и при диссоциации в растворах, чем комплексы тех же металлов с монодентатными лимандами, образующими аналогичные координационные связи. Повышенная устойчивость пятичленных металлоциклов, в меньшей мере - шестичленных металлоциклов известна как правило циклов Чугаева: наиболее устойчивы комплексы с пятичленными хелатными циклами, менее устойчивы - соединения с шестичленными хелатными циклами. Соединения с 3-, 4-членными металлоциклами и с циклами, имеющими более 6 членов, обычно гораздо менее устойчивы. Устойчивость ВКС и ХКС растет с увеличением числа металлоциклов в комплексе.

ВКС и ХКС широко применяются в аналитической химии для определения металлов, при их осаждении и разделении, а также в качестве катализаторов, красителей и пигментов, фармакологически активных компонентов лекарственных препаратов, стабилизаторов вин, препятствующих их окислению, для уменьшения жесткости воды и т.д.

Комплексонаты металлов - частный случай ХКС - широко используются в количественном анализе для определения различных металлов. Комплексонаты - это координационные соединения металлов с анионами комплексонов - полиосновных аминокарбоновых или аминофосфорных кислот. Анионы комплексонов обычно выступают в роли полидентатных лимандов.

Примеры комплексонов

1. Комплексон I, или нитрилотриуксусная  кислота N(CH2COOH)3 , - трехосновная кислота; в координации с центральными  атомами металла-комплексообразователя  могут участвовать атом азота  и три депротонированные карбоксильные группы; при этом образуются хелатные металлоциклы.

2. Комплексон II, или этилендиаминтетрауксусная  кислота (ЭДТУК), - четырехосновная органическая  кислота (HOOCCH2)2N-CH2-CH2-N(CH2COOH)2 . Общепринятое  сокращенное обозначение этой  кислоты - H4Y.

3. Комплексон III, или трилон Б, - двузамещенная натриевая соль ЭДТУК - Na2H2Y. В кристаллическом состоянии существует в форме дигидрата Na2H2Y " 2H2O. Распространенное сокращенное название этого комплексона - ЭДТА (этилендиаминтетраацетат). Максимальная дентатность полностью депротонированных ЭДТУК и ЭДТА равна шести, как уже указывалось выше. При образовании комплексонатов возникают несколько хелатных циклов, вследствие чего образующиеся комплексы металлов обладают высокой устойчивостью.

4. Нитрилотриметилфосфоновая кислота N(CH2PO(OH)2)3 образует координационные связи с центральным атомом металла через атом азота и атомы кислорода депротонированных фосфоновых остатков.

Типичными представителями ацидокомплексов являются гидроксокомплексы - координационные соединения, содержащие во внутренней сфере одну или несколько гидроксильных групп (гидроксогрупп) OH-, связанных с центральным атомом через атом кислорода. Комплексы, содержащие мостиковые группы OH- (т.е. гидроксогруппы, связанные одновременно с двумя центральными атомами металла), называют оловыми соединениями; процесс их образования называется оляцией, а сами мостиковые гидроксогруппы - ол-группами. Гидроксокомплексы могут существовать в форме комплексов катионного типа (например, [Al(H2O)4(OH)2 ]+, [Be(H2O)OH]+ и др.), анионного типа (например, [Cu(OH)4 ]2 -, [Zn(OH)4 ]2 -, [Sn(H2O)(OH)Cl4 ]-, [Pb(OH)6 ]4 - и т.д.) и нейтральных комплексов-неэлектролитов (например, [Sn(H2O)2Cl3(OH)], [CrPy2(H2O)(OH)3 ], где Py - молекула пиридина, и т.д.). Иногда гидроксокомплексы катионного и анионного типа называют также гидроксосолями или основными солями. Для соединений этого типа характерны реакции оксоляции, например:

[W(OH)F5 ] [WOF5 ]- + H+,протонирования, например:

 

[Cr(H2O)5(OH)]2 + + H3O+ [Cr(H2O)6 ]3 + + H2O,внутрисферного замещения гидроксогрупп другими лимандами или молекулами растворителя, полимеризации - с образованием оловых или оксосоединений.

Ацидоаминокомплексы - координационные соединения металлов, содержащие во внутренней сфере как нейтральные лиманды, так и ацидогруппы (например, [Co(NH3)5NO3 ]2 - используется при определении полумикроколичеств фосфатов; [CoEn2(NCS)2 ]+ используется для определения висмута(III) в форме [CoEn2(NCS)2 ][BiI4] и т.д.).

К комплексным соединениям относят (до некоторой степени условно) также изополикислоты и гетерополикислоты. Примером солей изополикислот могут служить калиевые соли дихромовой кислоты K2Cr2O7 и трихромовой кислоты K3Cr3O10 . К гетерополикислотам относятся такие соединения, как фосфорномолибденовая H3[PO4(MoO3)12 ] " nH2O, фосфорновольфрамовая H3[PO4(WO3)12] " nH2O, мышьяковомолибденовая H3[AsO4(MoO3)12] " nH2O кислоты и т.д. Используются в аналитической химии.

Информация о работе Комплексные соединения