Автор работы: Пользователь скрыл имя, 19 Октября 2014 в 17:11, курсовая работа
В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название сагboneum Углерод получил от carbo - уголь.
ВВЕДЕНИЕ ………………………………………………………………………………..
Глава 1.Общая характеристика подгруппы углерода……………………………………
Глава 2.Углерод…………………………………………………………………………….
2.1Физические свойства …………………………………………………………………..
2.2Химические свойства…………………………………………………………………..
2.3Получение и применение………………………………………………………………
Глава 3.Кремний……………………………………………………………………………
3.1Физические свойства …………………………………………………………………..
3.2Химические свойства…………………………………………………………………..
3.3Получение и применение………………………………………………………………
Глава 4.Германий ………………………………………………………………………….
4.1Физические свойства…………………………………………………………………...
4.2Химические свойства…………………………………………………………………..
4.3Получение и применение ……………………………………………………………...
Глава 5.Олово………………………………………………………………………………
5.1 Физические свойства…………………………………………………………………..
5.2 Химические свойства………………………………………………………………….
5.3 Получение и применение ……………………………………………………………..
Глава 6.Свинец……………………………………………………………………………..
6.1Физические свойства …………………………………………………………………..
6.2Химические свойства………………………………………………………………….
6.3Получение и применение………………………………………………………… …...
Глава 7.Эксперементальная часть ……………………………………………………......
Глава 8.Заключение ………………………………………………………………………
Глава 9. Список литературы ………
Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжелый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120Sn наиболее распространен (около 33%).
Физические свойства Олова. Олово имеет две полиморфные модификации. Кристаллическая решетка обычного β-Sn (белого Олово) тетрагональная с периодами а = 5,813Å, с = 3,176Å; плотность 7,29 г/см3. При температурах ниже 13,2 °С устойчиво α-Sn (серое Олово) кубической структуры типа алмаза; плотность 5,85 г/см3. Переход β->α сопровождается превращением металла в порошок. tпл 231 ,9 °С, tкип 2270 °С. Температурный коэффициент линейного расширения 23·10-6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10-6 ом·м, то есть 11,5·10-6 ом·см. Предел прочности при растяжении 16,6 Мн/м2 (1,7 кгс/мм2); относительное удлинение 80-90% ; твердость по Бринеллю 38,3-41,2 Мн/м2(3,9-4,2 кгс/мм2). При изгибании прутков Олова слышен характерный хруст от взаимного трения кристаллитов.
Химические свойства Олова. В соответствии с конфигурацией внешних электронов атома 5s25р2 Олово имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (II) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °С Олово практически не окисляется: его предохраняет тонкая, прочная и плотная пленка SnO2. По отношению к холодной и кипящей воде Олово устойчиво. Стандартный электродный потенциал Олова в кислой среде равен -0,136 в. Из разбавленных НCl и H2SO4 на холоду Олово медленно вытесняет водород, образуя соответственно хлорид SnCl2 и сульфат SnSO4. В горячей концентрированной H2SO4 при нагревании Олово растворяется, образуя Sn(SO4)2 и SO2. Холодная (0°С) разбавленная азотная кислота действует на Олово по реакции:
4Sn + 10HNO3 = 4Sn(NO3)2 + NH4NO3 + 3H2O.
При нагревании с концентрированной HNO3 (плотность 1,2-1,42 г/мл) Олово окисляется с образованием осадка метаоловянной кислоты H2SnO3, степень гидротации которой переменна:
3Sn + 4HNO3 + n H2O = 3H2SnO3·nH2O + 4NO.
При нагревании Олова в концентрированных растворах щелочей выделяется водород и образуется гексагидростаниат:
Sn + 2KOH + 4H2O = K2[Sn(OH)6] + 2H2.
Кислород воздуха пассивирует Олово, оставляя на его поверхности пленку SnO2. Химически оксид (IV) SnO2 очень устойчив, а оксид (II) SnO быстро окисляется, его получают косвенным путем. SnO2 проявляет преимущественно кислотные свойства, SnO - основные.
С водородом олово непосредственно не соединяется; гидрид SnH4образуется при взаимодействии Mg2Sn с соляной кислотой:
Mg2Sn + 4HCl = 2MgCl2 + SnH4.
Это бесцветный ядовитый газ, tкип -52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H2 в течение нескольких суток, а выше 150°С - мгновенно. Образуется также при действии водорода в момент выделения на соли Олова, например:
SnCl2 + 4HCl + 3Mg = 3MgCl2 + SnH4.
С галогенами олово дает соединения состава SnX2 и SnX4. Первые солеобразны и в растворах дают ионы Sn2+, вторые (кроме SnF4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием Олова с сухим хлором (Sn + 2Cl2 = SnCl4) получают тетрахлорид SnCl4; это бесцветная жидкость, хорошо растворяющая серу, фосфор, иод. Раньше по приведенной реакции удаляли Олово с вышедших из строя луженых изделий. Сейчас способ мало распространен из-за токсичности хлора и высоких потерь Олова.
Тетрагалогениды SnX4 образуют комплексные соединения с Н2О, NH3, оксидами азота, РСl5, спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды Олова дают комплексные кислоты, устойчивые в растворах, например H2SnCl4 и H2SnCl6. При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn(OH)2 или Н2SnО3·nН2О. С серой Олово дает нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-желтый SnS2.
Получение Олова. Промышленное получение Олова целесообразно, если содержание его в россыпях 0,01% , в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.
Концентраты, содержащие 50-70% Олова, обжигают для удаления серы, очищают от железа действием НCl. Если же присутствуют примеси вольфрамита (Fe,Mn)WO4 и шеелита CaWO4, концентрат обрабатывают НCl; образовавшуюся WO3·H2O извлекают с помощью NH4OH. Плавкой концентратов с углем в электрических или пламенных печах получают черновое Олово (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое Олово фильтруют при температуре 500-600 °С через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твердых сульфидов, которые снимают с поверхности Олова. От мышьяка и сурьмы Олово рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl2. Иногда Bi и Рb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого Олова. Около 50% всего производимого Олова составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов.
Применение Олова. До 40% Олово идет на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов. Оксид SnO2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na2SnO3·3H2O используется в протравном крашении тканей. Кристаллический SnS2("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb3Sn - один из наиболее используемых сверхпроводящих материалов.
Токсичность самого Олова и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным Оловом, практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH3 при случайном попадании воды на отходы очистки Олова от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли оксида Олова (так называемое черное Олово, SnO) могут развиться пневмокониозы; у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид Олова (SnСl4·5Н2О) при концентрации его в воздухе свыше 90 мг/м3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид Олова вызывает ее изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH4), но вероятность образования его в производственных условиях ничтожна. Тяжелые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH4 (за счет действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.
Органические соединения Олова, особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние, нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений Олова несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей.
Свинец
|
|
|
Свинец (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. Свинец - тяжелый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный Свинец состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238U, 235U и232Th. При ядерных реакциях образуются многочисленные радиоактивные изотопы Свинца.
Физические свойства Свинца. Свинец кристаллизуется в гранецентрированной кубической решетке (а = 4,9389Å), аллотропических модификаций не имеет. Атомный радиус 1,75Å, ионные радиусы: Рb2+1,26Å, Рb4+ 0,76Å; плотность 11,34 г/см3(20 °С); tпл 327,4 °С; tкип 1725 °С; удельная теплоемкость при 20 °С 0,128 кДж/(кг·К) [0,0306 кал/г·°С]| теплопроводность 33,5 вт/(м·К)[0,08 кал/см·сек·°С)]; температурный коэффициент линейного расширения 29,1·10-6 при комнатной температуре; твердость по Бринеллю 25-40 Мн/м2 (2,5-4 кгс/мм2); предел прочности при растяжении 12-13 Мн/м2, при сжатии около 50 Мн/м2; относительное удлинение при разрыве 50-70%. Наклеп не повышает механических свойств Свинца, так как температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). Свинец диамагнитен, его магнитная восприимчивость -0,12·10-6. При 7,18 К становится сверхпроводником.
Химические свойства Свинца. Конфигурация внешних электронных оболочек атома Pb 6s26р2, в соответствии с чем он проявляет степени окисления +2 и +4. Свинец сравнительно мало активен химически. Металлический блеск свежего разреза Свинца постепенно исчезает на воздухе вследствие образования тончайшей пленки РbО, предохраняющей от дальнейшего окисления.
С кислородом образует ряд оксидов Рb2О, РbО, РbО2, Рb3О4 и Рb2О3.
В отсутствие О2 вода при комнатной температуре на Свинец не действует, но он разлагает горячий водяной пар с образованием оксида Свинца и водорода. Соответствующие оксидам РbО и РbО2 гидрооксиды Рb(ОН)2 и Рb(ОН)4 имеют амфотерный характер.
Соединение Свинца с водородом РbН4 получается в небольших количествах при действии разбавленной соляной кислоты на Mg2Pb. PbH4 - бесцветный газ, который очень легко разлагается на Pb и Н2. При нагревании Свинец соединяется с галогенами, образуя галогениды РbХ2 (X -галоген). Все они малорастворимы в воде. Получены также галогениды РbХ4: тетрафторид PbF4 - бесцветные кристаллы и тетрахлорид РbСl4- желтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя F2 или Cl2; гидролизуются водой. С азотом Свинец не реагирует. Азид свинца Pb(N3)2 получают взаимодействием растворов азида натрия NaN3 и солей Рb (II); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на Pb и N2 со взрывом. Сера действует на Свинец при нагревании с образованием сульфида PbS - черного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей Pb (II); в природе встречается в виде свинцового блеска - галенита.
В ряду напряжений Pb стоит выше водорода (нормальные электродные потенциалы соответственно равны -0,126 в для Рb = Рb2+ + 2е и +0,65 в для Pb = Pb4+ + 4е). Однако Свинец не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения Н2 на Pb, а также образования на поверхности металла защитных пленок трудно-растворимых хлорида РbCl2 и сульфата PbSO4. Концентрированные H2SO4 и НCl при нагревании действуют на Pb, причем получаются растворимые комплексные соединения состава Pb(HSO4)2 и Н2[РbCl4]. Азотная, уксусная, а также некоторые органических кислоты (например, лимонная) растворяют Свинец с образованием солей Рb (II). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли Pb (IV) могут быть получены электролизом сильно подкисленных H2SO4 растворов солей Рb (II); важнейшие из солей Pb (IV)- сульфат Pb(SO4)2 и ацетат Рb(С2Н3О2)4. Соли Pb (IV) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО3)2- и (РbО4)4-, хлороплюмбатов (РbCl6)2-, гидроксоплюмбатов [Рb(ОН)6]2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х2[Рb(ОН)4].
Получение Свинца. Металлический Свинец получают окислительным обжигом PbS с последующим восстановлением РbО до сырого Pb ("веркблея") и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведется в агломерационных ленточных машинах непрерывного действия. При обжиге PbS преобладает реакция:
2PbS + ЗО2 = 2РbО + 2SO2.
Кроме того, получается и немного сульфата PbSO4, который переводят в силикат PbSiO3, для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (Cu, Zn, Fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из оксидов РbО, CuO, ZnO, Fe2O3. Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы ("фурмы") подают воздух под давлением. Кокс и оксид углерода (II) восстанавливают РbО до Pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:
СаСО3 = СаО + СО2
2РbSiO3 + 2СаО + С = 2Рb + 2CaSiO3+ CO2.
Оксиды Zn и Fe частично переходят в ZnSiO3 и FeSiO3, которые вместе с CaSiO3 образуют шлак, всплывающий на поверхность. Оксиды Свинца восстанавливаются до металла. Сырой Свинец содержит 92-98% Pb, остальное - примеси Cu, Ag (иногда Au), Zn, Sn, As, Sb, Bi, Fe. Примеси Cu и Fe удаляют зейгерованием. Для удаления Sn, As, Sb через расплавленный металл продувают воздух. Выделение Ag (и Au) производится добавкой Zn, который образует "цинковую пену", состоящую из соединений Zn с Ag (и Au), более легких, чем Рb, и плавящихся при 600-700 °C. Избыток Zn удаляют из расплавленного Рb пропусканием воздуха, водяного пара или хлора. Для очистки от Bi к жидкому Рb добавляют Са или Mg, дающие трудноплавкие соединения Ca3Bi2 и Mg3Bi2. Рафинированный этими способами Свинец содержит 99,8-99,9% Рb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%.