Автор работы: Пользователь скрыл имя, 19 Октября 2014 в 17:11, курсовая работа
В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название сагboneum Углерод получил от carbo - уголь.
ВВЕДЕНИЕ ………………………………………………………………………………..
Глава 1.Общая характеристика подгруппы углерода……………………………………
Глава 2.Углерод…………………………………………………………………………….
2.1Физические свойства …………………………………………………………………..
2.2Химические свойства…………………………………………………………………..
2.3Получение и применение………………………………………………………………
Глава 3.Кремний……………………………………………………………………………
3.1Физические свойства …………………………………………………………………..
3.2Химические свойства…………………………………………………………………..
3.3Получение и применение………………………………………………………………
Глава 4.Германий ………………………………………………………………………….
4.1Физические свойства…………………………………………………………………...
4.2Химические свойства…………………………………………………………………..
4.3Получение и применение ……………………………………………………………...
Глава 5.Олово………………………………………………………………………………
5.1 Физические свойства…………………………………………………………………..
5.2 Химические свойства………………………………………………………………….
5.3 Получение и применение ……………………………………………………………..
Глава 6.Свинец……………………………………………………………………………..
6.1Физические свойства …………………………………………………………………..
6.2Химические свойства………………………………………………………………….
6.3Получение и применение………………………………………………………… …...
Глава 7.Эксперементальная часть ……………………………………………………......
Глава 8.Заключение ………………………………………………………………………
Глава 9. Список литературы ………
Применение Свинца. Свинец широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. Свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). Большие количества Свинца идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе Свинца изготовляют многие свинцовые сплавы. Оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (желтый крон) и основные карбонат Свинца (свинцовые белила) - ограниченно применяемые пигменты. Хромат Свинца - окислитель, используется в аналитической химии. Азид и стифиат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат Свинца служит индикатором для обнаружения H2S. В качестве изотопных индикаторов используются 204Рb (стабильный) и 212Рb (радиоактивный).
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Опыт № 1. Взаимодействие углекислого газа со щелочью
Оборудование и реактивы: Аппарат Киппа, цилиндр, лучинка, спички, раствор соляной кислоты (1:2), мрамор, раствор гидроксида натрия (конц.), шпатель.
Ход работы: Заряжают аппарат Киппа на получение углекислого газа. В цилиндр без носика наливают 15-20 мл концентрированного раствора гидроксида натрия и опускают газоотводную стеклянную трубку от аппарата Киппа до поверхности раствора, но не в раствор. Открывают зажим и дают сильный ток углекислого газа, чтобы быстро вытеснить весь воздух. Затем вынимают трубку из цилиндра и перекрывают ток углекислого газа. Цилиндр быстро закрывают ладонью и слегка покачивают. Углекислый газ реагирует с гидроксидом натрия. В цилиндре возникает разрежение, давление падает, ладонь плотно прижимается к отверстию цилиндра. Демонстрируют подъем цилиндра открытой ладонью руки.
Протекает химический процесс: CO2 + 2NaOH ® Na 2CO3 + H2O
Чтобы убедиться в образовании карбонатов, в цилиндр по стенке осторожно приливают раствор соляной кислоты. Происходит вспенивание - активное выделение углекислого газа.
Техника безопасности: 1. Не допускать попадания газа в атмосферу класса.
Опыт № 2. Получение оксида углерода (IV) и изучение его свойств
Оборудование и реактивы: Две пробирки, пробка со вставленной в нее газоотводной трубкой, мрамор, соляная кислота (1:5), известковая вода, разбавленный раствор гидроксида натрия, фенолфталеин, лакмус, шпатель.
Ход работы: В пробирку поместить несколько кусочков мела или мрамора и прилить разбавленный раствор соляной кислоты. Закрыть пробирку пробкой с газоотводной трубкой. Пропустить выделившийся углекислый газ в пробирки:
а) с водой, подкрашенной раствором лакмуса;
б) с известковой водой: CO2 + Ca (OH)2 ® CaCO3 + H2O
в) с раствором щелочи и несколькими каплями фенолфталеина:
2NaOH + CO2 ® Na2CO3 + H2O
Опыт № 3. Распознавание карбонатов
Оборудование и реактивы: Штатив с пробирками, разбавленные растворы углекислого натрия, хлорида бария, нитрата серебра, азотной кислоты, соляной кислоты, мрамор, шпатель.
Ход работы: 1. В пробирку налить раствор углекислого натрия объемом 1 мл и прилить раствор хлорида бария такого же объема. Образуется белый осадок карбоната бария BaCO3.
Na2CO3 + BaCl2 ® BaCO3↓ + 2NaCl
К осадку прилить раствор соляной кислоты. Осадок растворится.
2. В пробирку налить
раствор углекислого натрия
Ag2CO3↓ + 2HNO3 ® 2AgNO3 + H2O + CO2
3. К кусочку мела или
мрамора прилить несколько
Утилизация. Содержимое пробирки с соединениями бария перенести в нейтрализатор. К содержимому пробирки с соединениями серебра поднести универсальную индикаторную бумагу. Если среда сильнокислая, то раствор можно использовать повторно для обнаружения хлорид–ионов. Если среда слабокислая - использовать повторно в этом же опыте
.
Опыт 4. Восстановительные свойства олова(II) в щелочной среде Реактивы. Водный (10–15%-ный) раствор хлорида олова(II) SnCl2, водный (5–10%-ный) раствор хлорида висмута(III) BiCl3, водный (8–10%-ный) раствор гидроксида натрия NaOH. Посуда и приборы. Химический стакан емкостью 250–400 мл, стеклянная палочка. Описание опыта. В химический стакан наливают 20–50 мл раствора хлорида олова(II) и порциями добавляют раствор гидроксида натрия. Сначала наблюдается выделение осадка гидроксида олова(II), а затем его растворение в результате образования гидроксокомплекса - тригидроксостаннат(II)-аниона:
SnCl2 + 2 NaOH = Sn(OH)2 + 2 NaCl
Sn(OH)2 + NaOH = Na[Sn(OH)3]
К полученному раствору, не прекращая перемешивания, добавляют небольшими порциями раствор хлорида висмута(III). Выпадает белый осадок гидроксида висмута(III), который вскоре чернеет из-за восстановления висмута:
BiCl3 + 3 NaOH = Bi(OH)3 + 3 NaCl
2 Bi(OH)3+ 3 Na[Sn(OH)3] + 3 NaOH = 2 Bi + 3 Na2[Sn(OH)6]
Таким образом, производные олова(II) в щелочной среде являются сильными восстановителями. Значение стандартного потенциала для окислительно-восстановительной пары [Sn(OH)6]2 /[Sn(OH)3]составляет 0,960 В (что характерно для сильных восстановителей).
ЗАКЛЮЧЕНИЕ
В заключении хотелось бы еще раз сказать подгруппу углерода входят углерод, кремний, германий, олово и свинец. Это р – элементы IV группы периодической системы Д. И. Менделеева. Их атомы на внешнем уровне содержат по четыре электрона — п2np2, чем объясняется сходство их химических свойств. Электронное строение внешних уровней атомов первых двух элементов подгруппы можно представить так:
В невозбужденном состоянии их атомы имеют по 2 неспаренных электрона. Поскольку атомы всей подгруппы имеют на внешнем уровне свободные орбитали, то при переходе в возбужденное состояние распаривают электроны s- подуровней (показано пунктирными стрелками). В соединениях элементы подгруппы углерода проявляют степень окисления +4 и -4, а также +2, причем последняя с увеличением заряда ядра становится более характерной. Для углерода, кремния и германия наиболее типична степень окисления +4, для свинца +2. Степень окисления -4 в последовательности С~РЬ становится все менее характерной. Среднее содержание Углерода в земной коре 2,3·10-2% по массе (1·10-2 в ультраосновных, 1·10-2 - в основных, 2·10-2 - в средних, 3·10-2 - в кислых горных породах.С накоплением Углерода в земной коре связано накопление и многих других элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т. д. Большую геохимическую роль в земной коре играют СО2 и угольная кислота. Огромное количество СО2выделяется при вулканизме - в истории Земли это был основные источник Углерода для биосферы.
По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает Углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.
Огромное геохимическое значение имеет круговорот Углерода.
Углерод широко распространен также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЯ
Приложение 1
Опыт № 1. Получение углерода термическим разложением древесины
Оборудование и реактивы: Штатив с лапкой, спиртовка, спички, резиновые прокладки, сосуд Ландольта, пробка со вставленной в нее стеклянной трубкой, синий лакмус, химический стакан, стружки сухого дерева.
Ход работы: Одно колено сосуда Ландольта заполняют плотно сухими стружками. Закрепляют прибор в штативе. Другое колено опускают в стакан с холодной водой. Равномерно прогрев весь сосуд, сильно нагревают стружки. Из стеклянной трубки выходит белый дым, его поджигают. Во втором колене собирается желтоватая смесь, состоящая из воды и жидких органических веществ. Нагревают до тех пор стружки, пока они не обуглятся и не прекратится выделение газов. Затем дают сосуду остыть, открывают пробку и высыпают уголь. Жидкостью из второго колена сосуда Ландольта пропитывают синюю лакмусовую бумагу. Покраснение лакмусовой бумаги свидетельствует о наличии в смеси кислоты.
Рис. 22. Термическое разложение древесины.
Техника безопасности: Перед нагреванием стружек равномерно прогреть сосуд Ландольта.
Утилизация: Жидкие продукты разложения древесины поместить в нейтрализатор.
Опыт № 2. Поглощение углем растворенных веществ и газов
а) Поглощение углем газов.
Рис.23. Поглощение углем газов.
Оборудование и реактивы: Штатив с лапкой, резиновые прокладки, U-образная трубка, стеклянная банка, пробка со вставленной в нее стеклянной трубкой, резиновая трубка, раствор перманганата калия, активированный уголь, соляная кислота (конц.), перманганат калия (кристал.), шпатель.
Ход работы: В U-образную трубку наливают воду, подкрашенную раствором перманганата калия, затем закрепляют ее в лапке штатива. Стеклянную банку заполняют хлором или оксидом азота (IV). U-образную трубку соединяют газоотводными трубками герметично с банкой и окрашенными газами. Открыв пробку в банке, быстро помещают активированный уголь и вновь герметично закрывают. Склянку с углем и газом сильно встряхивают. Подкрашенная вода в одном колене U-образной трубки поднимается. Объяснить наблюдаемые явления.
Техника безопасности: 1. Проводить опыт получения токсичных окрашенных газов в вытяжном шкафу. 2. Не допускать попадание газа (Cl2, NO2) в атмосферу класса.
3. Прокалить активированный уголь в вытяжном шкафу и использовать вновь.
Утилизация: Продукты реакции после получения хлора утилизировать по схеме в теме “Галогены”. Продукты реакции после получения оксида азота (IV) утилизировать по схеме в теме “Азот” (взаимодействие меди с азотной кислотой).
б) Поглощение углем растворенных веществ.
Оборудование и реактивы: Штатив с лапкой, резиновые прокладки, хлоркальциевая трубка, химический стакан, вата, слабый раствор перманганата калия или фуксина, активированный уголь.
Рис. 24. Поглощение углем растворенных веществ.
Ход работы: Хлоркальциевую трубку заполняют последовательно слоем ваты, слоем активированного угля и слоем ваты. Хлоркальциевую трубку закрепляют в штативе и наливают в нее воду, подкрашенную раствором перманганата калия (очень слабый раствор). В подставленный химический стакан стекает чистая прозрачная вода.