Очистка сточных вод гальванических производств

Автор работы: Пользователь скрыл имя, 23 Января 2015 в 10:17, курсовая работа

Описание работы

Влияние на сельскохозяйственные культуры. Поступая со сточными водами в почву при поливе, медь кумулируется почвой и растениями, оказывает на них вредное действие, начиная с концентрации 0,1 мг/л. ОДК с учетом фона 33 мг/кг для песчаных и супесчаных почв, 66 мг/кг для кислых (суглинистых и глинистых) почв, 132 мг/кг для близких к нейтральным и нейтральных (суглинистых и глинистых) почв.

Содержание работы

Задание;
Введение (воздействие компонентов растворов и электролитов на окружающую среду)
Методы очистки:
а) Реагентный метод;
б) Очистка методом выпаривания;
в) Ионообменный метод.
Аппаратурная схема и описание;
Описание работы основного аппарата;
Технологические расчеты;
Выводы;
Литература.

Файлы: 1 файл

!!!.doc

— 212.50 Кб (Скачать файл)

ФЕДЕРАЛЬНОЕ   АГЕНТСТВО   ПО   ОБРАЗОВАНИЮ

Озерский   технологический   институт

(филиал)

ГОСУДАРСТВЕННОГО   ОБРАЗОВАТЕЛЬНОГО   УЧРЕЖДЕНИЯ   ВЫСШЕГО   ПРОФЕССИОНАЛЬНОГО   ОБРАЗОВАНИЯ

«Московский инженерно-физический институт

(государственный университет)»

(ОТИ МИФИ)

 

 

                                                                                       Кафедра: ТМ и МаХП           

 

 

 

 

 

 

 

Курсовой проект

по процессам и аппаратам химических производств.

 «Очистка сточных вод гальванических производств».

 

 

 

 

 

Студенты                                                                        Филипьев А. В.

Группа                                                                          1ХТ-44Д

Преподаватель                                                              Молчанов Е. А.

 

 

 

 

 

 

2007

Оглавление:

  1. Задание;
  2. Введение (воздействие компонентов растворов и электролитов на окружающую среду)
  3. Методы очистки:

а) Реагентный метод;

б) Очистка методом выпаривания;

в) Ионообменный метод.

  1. Аппаратурная схема и описание;
  2. Описание работы основного аппарата;
  3. Технологические расчеты;
  4. Выводы;
  5. Литература.

 

Задание:

«Очистка сточных вод гальванических производств от Cu и Ni»

Сброс 10 м3/сутки.

 

Введение.

Воздействие компонентов растворов и электролитов на окружающую среду

Гальваническое производство является одним из наиболее опасных источников загрязнения окружающей среды, главным образом поверхностных и подземных водоемов, ввиду образования большого объёма сточных вод, содержащих вредные примеси тяжелых металлов, неорганических кислот и щелочей, поверхностно-активных веществ и других высокотоксичных соединений, а также большого количества твердых отходов, особенно от реагентного способа обезвреживания сточных вод, содержащих тяжелые металлы в малорастворимой форме.

Соединения металлов, выносимые сточными водами гальванического производства, весьма вредно влияют на экосистему водоем - почва - растение - животный мир - человек. Например, соединения кадмия даже в малых концентрациях оказывают резко выраженное токсическое действие на рыб и другие водные организмы. Весьма вредны соединения шестивалентного хрома, который при концентрации в воде более 0,01 мг/л оказывает токсическое действие на микрофлору водоемов. Многие химические вещества, поступающие в окружающую среду, в том числе и в водоемы, а через питьевую воду в организм человека, помимо токсического действия обладают канцерогенным (способны вызвать злокачественные новообразования), мутагенным (могут вызвать изменения наследственности) и тератогенным действием (способны вызвать уродства у рождающихся детей). Канцерогенное действие на теплокровных животных при поступлении в организм с питьевой водой оказывают мышьяк, селен, цинк и палладий, а при поступлении в организм другими путями - хром, бериллий, свинец, ртуть, кобальт, никель, серебро, платина. Тератогенное действие на животных в экспериментальных условиях оказали кадмий, свинец, мышьяк, кобальт, алюминий и литий. В опытах с радужной форелью описано мутагенное действие сульфида цинка, т.е. изменения в генах, которые могут проявляться не только в том поколении, когда  возник новый признак,  но  и  в  последующих поколениях. Некоторые неорганические соединения, например соединения хрома (IV), оказывают на людей аллергенное действие. Многие неорганические соединения даже в очень малых концентрациях оказывают вредное воздействие на рыб и их кормовые ресурсы. Большинство водных организмов более чувствительно к действию токсичных веществ, чем человек и теплокровные животные. Разные виды организмов неодинаково переносят действие неорганических соединений. Так, JIKso (летальная концентрация, при которой гибнет 50% особей) кадмия составляет для циклопов 3,8 мг/л, а для дафний - 0,055 мг/л. Икра лососевых рыб более чувствительна, чем взрослые особи, к действию меди и цинка.

Кумуляция вредных неорганических соединений тканями рыб создает угрозу отравления людей, употребляющих такую пищу. Ртуть накапливается микроорганизмами, рыбами и их кормовыми ресурсами до высоких концентраций. А, например, кадмия обнаружено в тканях рыб в 200 раз больше, чем содержалось в воде, что подтверждено в опытах на молоди окуня черного большеротого и ушастого, продолжающихся 6 месяцев при концентрациях кадмия в воде 0,0005-0,85 мг/л. Ткани устриц из водоемов кумулируют свинец, ртуть, кадмий, цинк, медь и кобальт.

В крупных городах и промышленных центрах вредные вещества поступают в водоемы в виде различных соединений и смесей, оказывающих совместное, или так называемое комбинированное действие на организм человека, теплокровных животных, флору и фауну водоемов, на микрофлору очистных сооружений канализации. Это может быть: 1) синергизм или потенционирование, когда эффект действия больше простого суммирования; 2) антагонизм, когда действие нескольких ядов бывает меньше суммированного и 3) аддитивное или простое суммирование. Нередко наблюдаются и отступления от этой схемы. Кадмий в сочетании с цинком и цианидами в воде усиливает их действие, мышьяк является антагонистом селена. В опытах с радужной форелью токсичность смеси сульфидов цинка и меди в малых концентрациях была примерно такая же, как и каждого компонента в отдельности, а при высоких концентрациях наблюдался синергизм.

Физико-химические свойства воды - температура, содержание кислорода,   жесткость   и  рН  -   влияют   на  токсичность   многих неорганических веществ. С повышением температуры воды увеличивается обмен веществ водных организмов и они получают больше яда. При увеличении общей жесткости воды с 20 до 260 мг/л по карбонату кальция средние летальные концентрации (ЛКср) различных соединений кадмия, меди, олова и свинца увеличиваются примерно в 100 раз. Увеличение рН с 6,6 до 8,0 также снижает токсичность многих веществ. Таким образом, в водоемах с малой жесткостью воды ядовитое действие металлов, как правило, будет больше, хотя и бывают исключения из этой закономерности. Поэтому снижение жесткости водопроводной воды может повысить токсичность содержащихся в ней металлов.

Некоторые неорганические соединения оказывают губительное действие на микроорганизмы очистных сооружений, прекращают или замедляют процессы биологической очистки сточных вод и сбраживание осадков в метантенках. Токсичные металлы в водоемах не подвергаются самоочищению, а наоборот, губительно действуют на флору и фауну и тормозят процессы самоочищения водоемов. Концентрация их в водоемах может уменьшаться за счет разбавления, осаждения на дне и частично усвоения флорой и фауной. Количество выпадающих в осадок веществ увеличивается при понижении скорости течения жидкости.

При использовании воды загрязненных водоёмов для орошения цветные металлы выносятся на поля и концентрируются в верхнем наиболее плодородном гумусосодержащем слое почвы. Концентрация металлов в этом слое приводит к снижению азотфиксирующей способности почвы и урожайности сельскохозяйственных культур, накоплению металлов выше допустимых концентраций в кормах и других продуктах.

По прогнозу до конца 2000 года тяжелые металлы займут одно из первых мест среди опасных факторов в общем загрязнении окружающей среды.

Ниже приведены данные о вредном воздействии на окружающую среду некоторых металлов и соединений, содержащихся в сточных водах гальванического производства. Вопросы непосредственного воздействия вредных веществ на человека и животных через кожный покров, органы дыхания и пищеварения достаточно подробно изложены в литературе по технике безопасности и производственной санитарии  (например: Вредные вещества в промышленности. Справочник. В 3-х томах/Под ред. Н.В.Лазарева. -Л.:Химия, 1976 г.).

Железо. В природных водах и источниках питьевого водоснабжения содержание железа колеблется в больших пределах - от 0,01 до 26,0 мг/л. Железо в концентрации более 0,05 мг/л придает воде желтоватую окраску, а в концентрации 1 мг/л - металлический привкус. Сульфат и хлорид железа сообщают воде привкус в концентрации 0,1-0,2 мг/л. ПДК для питьевой воды 0,3 мг/л.

Влияние на человека и теплокровных животных. Соединения железа для людей и теплокровных животных при введении внутрь малотоксичны. ЛД50 (летальная доза, при которой гибнет 50% •особей) для крыс, получавших с питьевой водой растворимые соединения хлорида железа, составила 900 мг/кг массы. Абсолютная смертельная доза хлорида железа при приеме внутрь через сутки составила: для кроликов 890 мг/кг, для крыс 984-1986 мг/кг массы; сульфата железа - для кроликов 2778,8 мг/кг, для крыс - 1389-2778 мг/кг массы.

Влияние на водные организмы. При поступлении в водоемы хлоридов, сульфатов и нитратов железа оно выпадает в осадок в виде гидроксида. Но малые концентрации железа остаются в растворе и при низком значении рН оказывают токсическое действие на рыб и мелкие водные организмы. Железо в концентрации в воде 1000 мг/л убивает рыб за несколько часов. Механизм вредного действия железа на рыб сводится к тому, что железо, находящееся в воде в виде гидроксида, осаждаясь на слизистой оболочке жабр рыб, закупоривает их и разъедает. В щелочной среде железо гибельно для рыб даже в концентрации 0,9 мг/л. Для карпа железо гибельно в концентрации 0,9 мг/л при рН 5,5 и ниже; для щуки, линя и форели железо гибельно в концентрации 1-2 мг/л при рН 5,0-6,7; при концентрации 0,52 мг/л оболочка икры байкальского омуля покрывалась хлопьями оксида железа (III) и почти утрачивала механическую прочность, что вызывало нарушение газообмена эмбриона с окружающей средой и гибель икры. Вредная концентрация хлорида железа (III) составляет (на ион железа) для водного ослика 5 мг/л, для молоди дафний 18 мг/л, для взрослых дафний 21 мг/л через 48 часов.

Железо в концентрации 1,25 мг/л снижает БПК5 (биологическое потребление кислорода за 5 суток) разведенных сточных вод на 1,51 мг/л по сравнению с контрольными пробами. Хлорид железа (II) в сточных водах в концентрации 5 мг/л (на ион железа) задерживает образование активного ила на очистных сооружениях и сбраживание осадка в метатенках; при этой концентрации гибнет микрофлора биологических фильтров.

Медь.  В  природных водах и  источниках водоснабжения  нашей, страны   содержится  в  небольших   концентрациях,   как   правило, порядка 10-3 мг/л. Следует отметить большие колебания в концентрациях меди в водоемах и источниках водоснабжения - от 0,001 до 0,98 мг/л. Вблизи меднорудных предприятий - до 100 мг/л.

Медь придает воде неприятный привкус при концентрации 1,5 мг/л, окрашивает воду при концентрации 0,5 мг/л и снижает её прозрачность при концентрации 1,0 мг/л.

Влияние на человека и теплокровных животных. Смертельная доза для человека составляет 10 г/кг массы, доза 60-100 мг/кг массы вызывает тошноту, рвоту, гастроэнтерит, а доза 10-30 мг/кг массы не оказывает токсического действия при потреблении меди внутрь в течение нескольких недель.

ЛД50 для теплокровных животных при приеме внутрь составляет (на металл): хлорида меди - 140 мг/кг, карбоната меди -159 мг/кг, сульфата меди - 300 мг/кг, нитрата меди - 340 мг/кг массы. Медь в концентрации 1 мг/л токсична для сельскохозяйственных животных. По некоторым сведениям медь проявляет мутагенное действие. ПДК для питьевой воды 1,0 мг/л.

Влияние на водные организмы. ЛК50 для рыб 0,002 мг/л, для дафний - 0,005 мг/л, для сине-зеленых водорослей - 0,01 мг/л.

БПК5 разведенных сточных вод снижается при концентрации меди 0,001 мг/л на 7 %, при 0,05 мг/л - на 24 %, при 0,1 мг/л - на 37 %, при 0,5 мг/л - на 46 %. БПК5 сточных вод снижается при концентрации меди 0,04 мг/л на 10 %, при 0,05 мг/л - на 20 %. При концентрации меди 0,01 мг/л тормозятся процессы самоочищения водоемов. При концентрации 0,4-0,5 мг/л медь губительно действует на микрофлору и тормозит биологические процессы очистки сточных вод, задерживает размножение микроорганизмов, аммонификацию и нитрификацию сточных вод; при концентрации меди 1,0 мг/л заметно тормозятся процессы аэробной очистки сточных вод активным илом, уменьшается количество окисленного азота в сточных водах, задерживается образование активного ила.

Влияние на сельскохозяйственные культуры. Поступая со сточными водами в почву при поливе, медь кумулируется почвой и растениями, оказывает на них вредное действие, начиная с концентрации 0,1 мг/л. ОДК с учетом фона 33 мг/кг для песчаных и супесчаных почв, 66 мг/кг для кислых (суглинистых и глинистых) почв, 132 мг/кг для близких к нейтральным и нейтральных (суглинистых и глинистых) почв.

 

Никель. В реках России никель содержится в концентрациях 0,0008-0,0056 мг/л. В источниках водоснабжения он обнаружен в количестве в среднем 0,0117 мг/л.

Сульфат и хлорид никеля сообщают воде металлический привкус в концентрации 50 мг/л, окрашивают воду в концентрации 1000 мг/л, на запах не ощущаются. В концентрации 1 мг/л никель заметно увеличивает мутность воды.

Влияние на человека и теплокровных животных. Смертельная доза для теплокровных животных составляет 34 мг/кг массы, для собак - 10-20 мг/кг массы.

Никель способен вызывать аллергические реакции ("никелевая чесотка", экзема), всасываться кожей и оказывать общетоксическое действие. По некоторым данным никель обладает канцерогенным и мутагенным действием.

Влияние на водные организмы. Нахождение в воде, загрязненной никелем в концентрациях, указанных ниже, в течение 96 часов приводит к гибели следующих водных организмов: комаров - 8,6 мг/л, гаммарид - 13,0 мг/л, моллюсков - 11,4 мг/л, щетинкового червя - 14,1 мг/л, улиток - 14,3 мг/л. Токсическое действие проявляется на гольяна при концентрации 0,38 мг/л, на бокоплава - при 2,5 мг/л, на радужную форель - при 25,0 мг/л, на карпа - при 45,0 мг/л.

Информация о работе Очистка сточных вод гальванических производств