Основы химии биогенных элементов. Биоэлементы неметаллы. Кислород. Азот. Сера. Углерод. Йод. Кремний

Автор работы: Пользователь скрыл имя, 15 Февраля 2013 в 22:27, реферат

Описание работы

Л. П. Виноградов считал, что концентрация элементов в живом веществе прямо пропорциональна его содержанию в среде обитания с учетом растворимости их соединений. По мнению А. П. Виноградова химический состав организма определяется составом окружающей среды. Биосфера содержит 100 млрд. тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний.

Файлы: 1 файл

реферат по химии.docx

— 98.67 Кб (Скачать файл)

ГБОУ ВПО АГМА МИНЗДРАВСОЦРАЗВИТИЯ  РОССИИ

 

                                  Кафедра общей и биоорганической  химии

                                                        Заведующий кафедры д.м.н.

                                                            профессор А. А. Николаев

 

 

                                    РЕФЕРАТ

                                     на тему:

              Основы химии биогенных элементов.

                        Биоэлементы неметаллы.

         Кислород. Азот. Сера. Углерод. Йод.  Кремний.

 

 

                                               Выполнила: студентка 104 группы

                                               лечебного факультета

                                               Алибаева Диана Гильмановна

                                      Проверил: заведующий кафедры д.м.н.

                                               профессор А. А. Николаев

                                         

 

                                           

                                                Астрахань 2012

Химические элементы в окружающей среде и в организме  человека

Распространенность элементов  в природе. Биосфера. Биогенные элементы. Классификация биогенных элементов. Элементный состав человека

Часть земной оболочки, занятой  растительными и животными организмами  и переработанная ими и космическими излучениями и приспособленная  к жизни, называют биосферой (по Вернадскому).

Л. П. Виноградов считал, что  концентрация элементов в живом  веществе прямо пропорциональна  его содержанию в среде обитания с учетом растворимости их соединений. По мнению А. П. Виноградова химический состав организма определяется составом окружающей среды. Биосфера содержит 100 млрд. тонн живого вещества. Около 50% массы  земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Пути поступления элементов в организм разнообразны. Согласно биогеохимической теории Вернадского существует «биогенная миграция атомов» по цепочке воздух> почва>вода>пища>человек, в результате которой практически все элементы, окружающие человека во внешней среде, в большей или меньшей степени проникают внутрь организма.

Содержание некоторых  элементов в организме по сравнению  с окружающей средой повышенное –  это называют биологическим концентрированием  элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых  организмах занимает второе место (21%). Однако эта закономерность наблюдается  не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало,  алюминия – 7,45%, а в живых организмах -1·10-5%.

В составе живого вещества найдено более 70 элементов.

Элементы необходимые  организму для построения и жизнедеятельности  клеток и органов, называют биогенными элементами.

Для 30 элементов биогенность  установлена. Существует несколько  классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме  их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного  фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это  биологически активные атомы  центров ферментов, гормонов (переходные  металлы).

Б) По концентрации элементов  в организме биогенные элементы делят:

1) макроэлементы;

2) микроэлементы;

3) ультрамикроэлементы.

Биогенные элементы, содержание которых превышает 0,01% от массы тела, относят к макроэлементам. К ним отнесены 12 элементов: органогены, ионы электролитного фона и железо. Они составляют 99,99% живого субстрата. Еще более поразительно, что 99% живых тканей содержат только шесть элементов: С, Н, О, N, Р, Ca. Элементы К, Na, Mg, Fe, Сl, S относят к олигобиогенным элементам. Содержание их колеблется от 0,1 до 1%. Биогенные элементы, суммарное содержание которых составляет величину порядка 0,01%, относят к микроэлементам. Содержание каждого из них 0,001% (10-3 – 10-5%).Большинство микроэлементов содержится в основном в тканях печени. Это депо микроэлементов. Некоторые микроэлементы проявляют сродство к определенным тканям ( йод - к щитовидной железе, фтор - к эмали зубов, цинк - к поджелудочной железе, молибден - к почкам и т.д.). Элементы, содержание которых меньше чем 10-5%, относят к ультрамикроэлементам. Данные о количестве и биологической роли многих элементов невыяснены до конца. Некоторые из них постоянно содержатся в организме животных и человека: Ga, Ti, F, Al, As, Cr, Ni, Se, Ge, Sn и другие. Биологическая роль их мало выяснена. Их относят к условно биогенным элементам.  Другие примесные элементы (Те, Sc, In, W, Re и другие) обнаружены в организме человека и животных, и данные об их количестве и биологической роли не выяснены. Примесные элементы также делят на аккумулирующиеся (Hg, Pb, Cd) и не аккумулирующиеся (Al, Ag, Go, Ti, F). Известны крылатые слова, сказанные в 40-х годах немецкими учеными Вальтером и Идой Ноддак: «В каждом булыжнике на мостовой присутствуют все элементы периодической системы». Если согласиться, что в каждом булыжнике содержатся все элементы, то тем более это должно быть справедливо для живого организма.

Все живые организмы имеют  тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента (смотрите таблицу № 1). Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. Содержание в организме элементов IIIA–VIA групп, ковалентносвязанных с органической частью молекул, уменьшается с ростом заряда ядра атомов данной группы периодической системы Д. И. Менделеева. Например, w(О) > w(S) > w(Se) > w(Fe). Количество элементов, находящихся в организме в виде ионов (s-элементы IA, IIА групп, р-элементы VIIA группы), с ростом заряда ядра атома в группе увеличивается до элемента с оптимальным ионным радиусом, а затем уменьшается. Например, во IIА группе при переходе от Be к Са содержание в организме увеличивается, а затем от Ва к Ra снижается. Элементы, аналоги, имеющие близкое строение атомов, имеют много общего в биологическом действии. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (таблица № 1).

Таблица № 1. Суточное поступление химических элементов в организм человека

Химический  элемент

Суточное  потребление, в мг

Взрослые

Дети

Калий

2000-5500

530

Натрий

1100-3300

260

Кальций

800-1200

420

Магний

300-400

60

Цинк

15

5

Железо

10-15

7

Марганец

2-5

1,3

Медь

1,5-3,0

1,0

Титан

0,85

0,06

Молибден

0,075-0,250

-

Хром

0,05-0,20

0,04

Кобальт

Около 0,2 витамин B12

0,001

Хлор

3200

470

РО43-

800-1200

210

SO42-

10

Йод

0,15

0,07

Селен

0,05-0, 07

Фтор

1,5-4,0

0, 6


Столько же химических элементов  должно выводиться, поскольку их содержание в организме находится в относительном постоянстве.

 
Современное состояние знаний о  биологической роли элементов можно  характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток. Составлены карты биогеохимического районирования и биогеохимических провинций. Но нет общей теории рассматривающей функции, механизм воздействия и роль микроэлементов в биосфере. Характерным признаком жизненной необходимости элемента является колокообразный характер кривой, построенной в координатах, ответная реакция организма (R) - доза элемента (Д).

 
При недостаточном поступлении элемента в организм (г) наносится существенный ущерб росту и развитию организма. Это объясняется снижением активности ферментов, в состав которых входит элемент. При повышении дозы этого  элемента (в) ответная реакция организма  возрастает, достигает нормы (биотическая  концентрация элемента). Чем больше ширина плато (а), тем меньше токсичность  элемента. Дальнейшее увеличение дозы (с) приводит к снижению функционирования вследствие токсического действия избытка  элемента вплоть до летального исхода (г). Дефицит и избыток биогенного элемента наносит вред организму. Все живые организмы реагируют на недостаток и избыток или неблагоприятное соотношение элементов.

Обычные микроэлементы, когда  их концентрация в организме превышает  биотическую концентрацию,  проявляют токсическое действие на организм. Токсичные элементы при очень малых концентрациях не оказывают вредного воздействия на растения и животных. Например, мышьяк при микроконцентрациях  оказывает  биостимулирующее действие.   Следовательно, нет токсичных элементов, а есть токсичные дозы. Таким образом, малые дозы элемента - лекарство, большие дозы - яд. «Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным» - Парацельс. Уместно вспомнить слова таджикского поэта Рудаки: «Что нынче снадобьем слывет, то завтра станет ядом».

Итак, биогенность 30 элементов  установлена. Относительно постоянно  содержание в организме человека 70 элементов (в пределах порядка). Отмечаются сильные колебания уровня (несколько  порядков) примесных элементов и  относительно низкий уровень примесных  элементов у сельских жителей. Постоянство  содержания необходимых элементов  вероятнее всего определяется эффективными механизмами гомеостаза. Предположения  ученых идут еще дальше. В живом  организме не только присутствуют все  элементы, но каждый из них выполняет  какую-то функцию. Учитывая строение атома, формы и свойства соединений титана, содержание в организме выполняемые  им функции и ответные реакции  организма на его введение, мы считаем  этот элемент жизненно необходимым  элементом. Титан относится к  числу наиболее распространенных в  природе элементов. В земной коре содержание только девяти элементов (О, Fe, Si, Са, Mg, К, Na, Al, H) превышает содержание титана, массовая доля которого составляет 0,61%. Среди переходных металлов титан  по распространенности в земной коре занимает второе место после железа. Содержание титана в тканях рыб составляет 10-4%, в организме животных, обитающих на суше, равно 9·10-4%. В организме человека он обнаружен еще 19 веке. Титан постоянно содержится в организме человека. Концентрация его в пределах 10-6%. В органах человека содержание титана составляет в среднем 1 мг на 100 г золы или 0,02 мг на 100 г сырого вещества. В 1937г. В.И. Вернадский сделал предположение о том, что титан нужен  организму и выполняет  определенные жизненно важные функции. Изучение биологической значимости титана проводили в хроническом эксперименте на растениях и животных путем определения реакции организма на добавку титана. Кривая ответной реакции организма на дозу титана имеет аналогичный биогенным элементам колоколообразный характер. Отмечено возникновение ряда заболеваний при нарушении обмена титана. В развернутой фазе острого лейкоза, при гастрогенной железодефицитной анемии, постгеморогической анемии, раке, язвенной болезни желудка и при оперативном вмешательстве в ранние послеоперационные сроки содержание титана в крови снижается. Нарушение обмена титана отмечено также при болезни Боткина, токсикозе и нефропатии беременных, у больных микробной экземой и нейродермитом, при ожогах. При повышении дозы титана в организме ответная реакция возрастает, затем достигает нормы. В эксперименте на крысах при изучении иммунорегуляторных свойств комплексоната титана на основе гидроксиэтилидендифосфоновой кислоты установлен дозозависимый эффект на показатели клеточного и гуморального иммунитета. Биотическая концентрация 10 мг/кг живой массы. При данной дозе  эффективность иммуностимулирующего действия повышается до 60%. Нормальное функционирование наблюдается в широком интервале концентраций (до 80мг/кг). Дальнейшие повышение дозы приводит к иммунодепрессивному эффекту и токсическому действию.

 

Биоэлементы неметаллы

Кислород

Необходимость: Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. 
 
В организме: В каждом растении или животном кислорода гораздо больше, чем любого другого элемента - в среднем около 70%. Мышечная ткань человека содержит 16% кислорода, костная ткань - 28.5%; всего в организме среднего человека при массе тела 70 кг, содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания - свободный кислород и с водой - связанный кислород. 
 
Оздоровительный эффект: Небольшие количества кислорода используют в медицине: кислородом, из так называемых кислородных подушек, дают некоторое время дышать больным, у которых затруднено дыхание. 
 
Недостаток: понижение содержания кислорода (гипоксия) в тканях и клетках при облучении организма ионизирующей радиацией обладает защитным действием - так называемый кислородный эффект. Этот эффект используют в лучевой терапии: повышая содержание кислорода в опухоли и понижая его содержание в окружающих тканях усиливают лучевое поражение опухолевых клеток и уменьшают повреждение здоровых. 
 
Повышенное содержание: длительное вдыхание воздуха, обогащенного кислородом, опасно для здоровья человека. Высокие концентрации кислорода вызывают в тканях образование свободных радикалов, нарушающих структуру и функции биополимеров. При некоторых заболеваниях применяют насыщение организма кислородом под повышенным давлением - гипербарическую оксигенацию. 
 
Метаболизм: Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе. 
 
Наличие в атмосфере кислорода в значительной степени определило характер биологической эволюции. Аэробный (с участием O2) обмен веществ возник позже анаэробного (без участия O2), но именно реакции биологического окисления, более эффективные, чем древние энергетические процессы брожения и гликолиза, снабжают живые организмы большей частью необходимой им энергии. Исключение составляют облигатные анаэробы, например, некоторые паразиты, для которых кислород является ядом. Использование кислорода, обладающего высоким окислительно-восстановительным потенциалом, в качестве конечного акцептора электронов в цепи дыхательных ферментов, привело к возникновению биохимического механизма дыхания современного типа. Этот механизм и обеспечивает энергией аэробные организмы. 
 
Основатель современной химии Антуан Лавуазье (1743-1794) первым понял, что принципиальных различий между окислением углеводов в клетке и горением дров в печке нет. В обоих случаях органические вещества разрушаются при участии кислорода до углекислого газа и воды с выделением энергии. В клетке окисление идет поэтапно и строго контролируется, поэтому часть энергии не выделяется сразу в виде тепла, а запасается в форме молекул АТФ, которые затем организм использует в качестве топлива для самых разнообразных процессов, включая перенос ионов через мембраны, сокращение мышц, деление клетки, синтез жизненно важных веществ и т.п. Клеточное дыхание включает в себя последовательность биохимических реакций, объединяемых в т.н. "метаболические пути", например гликолиз, окисление пировиноградной кислоты, цикл трикарбоновых кислот, электронтранспортную цепь и др. Гликолиз протекает в цитозоле, т.е. жидкой внутренней среде клетки, не оформленной в определенные структуры. Другие названные выше реакции происходят у всех эукариот внутри митохондрий. Это микроскопические, окруженные мембранами, способные к самовоспроизведению тельца, плавающие в цитозоле и обычно называемые энергетическими станциями клетки. Полное окисление глюкозы до диоксида углерода приводит к образованию 32 молекул АТФ. Превращение глюкозы в две молекулы пирувата дает только две из этих 32 молекул АТФ и не требует участия молекулярного кислорода. Остальная часть АТФ может затем образовываться при окислении пировиноградной кислоты в цикле трикарбоновых кислот и в процессе электронов по электронтранспортной цепи - уже с использованием кислорода. 
 
В отсутствие кислорода пировиноградная кислота может восстанавливаться до молочной или ацетальдегида, а последний - превращаться в этанол с выделением углекислого газа, например при брожении. Молочная кислота образуется при дефиците кислорода в тканях большинства животных, а этанол дают некоторые рыбы, но главным образом бактерии и дрожжи. Расщепление углеводов (глюкозы) с образованием этих веществ нередко называют анаэробным дыханием. Присутствие кислорода подавляет его в большинстве клеток - в таких условиях пировиноградная кислота окисляется дальше. Это явление - ингибирование кислородом анаэробного использования глюкозы (при этом эффективность использования глюкозы обычно возрастает, поскольку одна ее молекула начинает давать больше АТФ) - называется эффектом Пастера в честь французского химика и биолога, основателя бактериологии Луи Пастера (1822-1895). 
 
Нахождение в природе: Кислород - самый распространенный на Земле элемент, на его долю, в составе различных соединений, главным образом силикатов, приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры. 
 
Кислород в атмосфере Земли начал накапливаться в результате деятельности первичных фотосинтезирующих организмов, появившихся, вероятно, около 2,8 млрд. лет назад. Полагают, что 2 млрд. лет назад атмосфера уже содержала около 1% кислорода; постепенно из восстановительной она превращалась в окислительную и примерно 400 млн. лет назад приобрела современный состав. 
 
Таблица Менделеева: Кислород, лат. Oхygenium, O, химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева расположен во втором периодевгруппеVIA. 
 
Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). Радиус нейтрального атома кислорода 0,066 нм. Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кислорода 2 s 2 р 4. Энергии последовательной ионизации атома кислорода 13,61819 и 35,118 эВ, сродство к электрону 1,467 эВ. Радиус иона O2-при разных координационных числах от 0,121 нм (координационное число 2) до 0,128 нм (координационное число 8). В соединениях проявляет степень окисления -2 (валентность II) и, реже, -1 (валентность I). По шкале Полинга электроотрицательность кислорода 3,5 (второе место среди неметаллов послефтора). 
 
В свободном виде кислород - газ без цвета, запаха и вкуса.

Информация о работе Основы химии биогенных элементов. Биоэлементы неметаллы. Кислород. Азот. Сера. Углерод. Йод. Кремний