Шпаргалка по «Неорганической химии»

Автор работы: Пользователь скрыл имя, 08 Мая 2015 в 17:19, шпаргалка

Описание работы

1. Эквивалент. Эквивалентная масса. Эквивалентный объём (привести примеры). Закон эквивалентов.
Эквивалент – (Д.А. Князев) это реальная или условная частица вещества, которая в данной кислотно-основной реакции эквивалентна одному катиону водорода или в данной окислительно-восстановительной реакции одному электрону.
Эквивалент – (А.Н. Барышев) это масса равная 1/12 массы атома углерода или 1/2 массы атома водорода.
(!)– это такое его количество, которое присоединяет 1 моль атомов водорода или полмоля атомов кислорода
Эквивалент вещества – (П.М. Саргаев) это условная частица, в целое число раз меньшая (или равная), чем соответствующая ей структурная (или формульная) единица вещества (атом, молекула, ион), участвующая в конкретной реакции.
Эквивалент элемента – (Г.Ц. Хомченко) это такое его количество, которое присоединяет или замещает 1 моль атомов водорода.

Файлы: 1 файл

химия.doc

— 725.50 Кб (Скачать файл)

Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

 

19. Равновесие  в растворах слабых электролитов. Влияние одноимённого и связывающего ионов.

В растворах слабых электролитов устанавливается равновесие между недиссоциированными молекулами и продуктами их диссоциации - ионами.

Влияние посторонних веществ на степень диссоциации слабого электролита зависит от природы вводимых ионов. Здесь можно выделить 2 случая: присутствие либо одноименных, либо связывающих ионов.

Изменение концентрации одного из ионов, образующегося при диссоциации данного слабого электролита, согласно принципу Ле Шателье смещает положение равновесия. Если в систему вводятся одноименные ионы, то есть увеличивается концентрация одного из образующихся при диссоциации ионов, то равновесие смещается в сторону недиссоциированных молекул этого электролита. Степень диссоциации слабого электролита уменьшается.

Если в раствор слабого электролита вводятся связывающие ионы, то происходит связывание одного из продуктов диссоциации слабого электролита, что приводит к смещению равновесия диссоциации этого вещества в сторону ионной формы. Степень диссоциации слабого электролита увеличивается.

 

20.Амфотерные  гидроксиды с точки зрения  теории электролитической диссоциации.

Амфотерные электролиты могут находиться в осадке и в растворе в виде молекул  и диссоциировать по типу кислоты и основания. Например, слабыми электролитом является гидроксид цинка. Его диссоциацию можно представить в виде схемы:

Zn(OH)2 (осадок)

2H+ + ZnO22- ↔ H2ZnO2 ↔ (раствор) Zn(OH)2 ↔ Zn2+ + OH-

Добавление кислоты или целочи вызывает растворения осадка, так как и в том, и в другом случае связываются ионы ОН- или Н+, что приводит к образованию слабого электролита Н2О

В первом случае равновесие диссоциации смещается в сторону ионной формы основания (вправо), во втором – в сторону ионной формы кислоты (вправо)

 

21.Сильные  электролиты. Активная концентрация. Ионная сила раствора.

1)Электролиты – это вещества, растворы и расплавы которых проводят электрический ток. Сильные электролиты - это вещества, которые при растворении практически полностью диссоциируют на ионы. К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). И.А Каблуков установил причины полной диссоциации сильных электролитов в растворах: в водных растворах сильные электролиты полностью диссоциируют за счет ион-дипольного взаимодействия с молекулами воды. Продукты взаимодействия - гидратированные ионы.

2) Активная концентрация - концентрация свободных гидратированных ионов в растворе.

3)Ионная сила раствора равна полусумме произведений молярных концентраций всех присутствующих ионов на квадраты их зарядов:

μ= 1/2(c1z1² + c2z2² + ... + cnzn²) = 1/2 Σсizi²

 Этот параметр нужен  для определения коэффициента  активности иона. С увеличением  ионной силы раствора коэффициент активности уменьшается.

Сильные электролиты – это электролиты, которые в водных растворах диссоциируют практически полностью. Истинная степень их диссоциации близка к 100%, однако экспериментально наблюдаемая находится в пределах от 30% и выше.

 

 

 

 

22.Диссоциация  воды. Ионное произведение воды. Водородный показатель рH.

Диссоциация воды - разложение воды на составляющие химические элементы, иногда происходящая с созданием новых элементов, изначально в разлагаемом растворе не содержащихся, или содержащихся до начала разложения в меньшем количестве, чем после завершения процесса диссоциации.

1)Чистая вода, хоть и  плохо (по сравнению с растворами  электролитов), но может проводить  электрический ток. Вода является  слабым электролитом, в малой степени диссоциирует на ионы:       Н2О ↔ H+ + OH-   

2)Ионное произведение  воды, произведение концентраций (точнее  активностей) ионов водорода Н+ и  ионов гидроксила OH-  в воде  или в водных растворах: Kв = [Н+] [ОН-], где Kв - постоянная величина, называемая ионное произведение воды.

3) Водородный показатель рH - величина, характеризующая концентрацию ионов водорода; равна отрицательному десятичному логарифму концентрации ионов водорода. В нейтральной среде Ph = 7, в кислых средах < 7, в щелочных >7.

- это функция отрицательного десятичного логарифма концентрации катионов водорода рH = - lg[H+] или [H+] = 10-pH, где [H+] -  концентрация ионов водорода, моль/л. Вспомогательные формулы: [H+] =  10-14/ [OH-] . рH может быть выражен через ионное произведение  воды: Kw = [H+][OH-] = 10-14 ; рH может быть выражен: [Н+] = См α n[H-] где  См - молярная концентрация, α - кажущаяся степень диссоциации, n - количество катионов водорода в кислоте. [OH-] =  См  α n[ОH-]

 

 

 

 

23.Гидролиз  солей. Роль в живом организме.

1) Гидролиз соли – взаимодействие ионов соли с водой, приводящее к образованию слабого электролита. Гидролиз соли на примере ацетата натрия - сильный электролит, при растворении в воде полностью диссоциирует на ионы Na+ и CH3COO- . Суммарное ур-е протекающих процессов имеет вид:  CH3COO- + Н2О ↔ CH3COOH + OH- . Cуществует константа гидролиза  Кг , равная Кг =Кв/Кк  где Kв - постоянная величина, называемая ионное произведение воды, Кк  - константа диссоциации слабой кислоты, образованной в результате гидролиза соли.

2) Гидролизу подвергаются соли, образованные: а) сильным основанием  и слабой кислотой; б) сильной  кислотой и слабым основанием; в) слабым основанием и слабой  кислотой.

3) Важной стадией процесса пищеварения является гидролиз пищи в желудочно-кишечном тракте. Энергия в живых организмах запасается, в основном, в виде АТФ и выделяется при ее гидролизе.

Процесс  ферментативного гидролиза играют важную роль в пищеварении и тканевом обмена веществ всех живых организмов, играет важную роль в регуляции кислотной среды и в поддержании в организме кислотно-щелочного равновесия.

 

 

 

24.Современная  модель состояния электрона в  атоме. Квантовые числа. Принцип  Паули.

Атом с более чем одним электроном представляет собой сложную систему взаимодействующих друг с другом электронов, движущихся в поле ядра.

Электроны в атоме притягиваются к ядру, между электронами также действует кулоновское взаимодействие. Эти же силы удерживают электроны внутри потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо получить энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.

1) С точки зрения квантовой  или волновой механики, электрон - это такое образование, которое  ведёт себя и как частица, и как волна, т.е. он обладает корпускулярно-волновым дуализмом (двойственностью). Т.о. электроны могут производить давление, а движущийся поток электронов обнаруживает волновые явления, например дифракцию электронов. Представим корпускулярно-волновой дуализм как частицу и выразим через ур-е Луи де Бройля: λ = h/mv , где λ - длина волны, h - постоянная Планка(6,63х10 в степени -34, Дж с), m - масса, v - скорость микрочастицы.

Электрон находится в пространстве рядом с ядром, но т.к. он постоянно в движении можно рассматривать лишь совокупность его расположений - т.е. электронное облако, т.о. эл. облако - это квантово-механическая модель движения электрона в атоме. Плотность эл. облака неравномерна - часть атомного пространства, где электрон пребывает больше всего, плотней.

Электроны распределяются по энергетическим уровням (слоям/оболочкам).

2) Квантовые числа определяют  состояние электрона в атоме, точнее - на каком энергетическом  уровне электрон находится.

Главное квантовое число (n) - характеризует энергию электрона и размеры электронного облака. Принимает значения целых чисел от 1 до 7 соответственно номеру периода, в котором находится элемент.

Орбитальное (побочное или азимутальное) квантовое число(l) - характеризует энергетическое состояние электрона в подуровне и форму облака. Принимает значения на единицу меньше, чем n.

Магнитное квантовое число(m) - характеризует орбитали в пространстве и связано с числом l. m = 2l + 1

Спиновое квантовое число (s) - характеризует собственное вращение электрона вокруг своей оси. Это вращение называется спин и принимает только два значения  +1/2, -1/2.

3) По принципц Паули  на одной орбитали может находится 2 электрона с противоположными  спинами: на s-подуровне = 2 электрона, на p-подуровне = 6 эл., на d-подуровне = 10, на f-подуровне = 14. Число электронов на подуровне определяется уравнением Nl  = 2(2l + 1).

 

 

25.Распределение  электронов в атоме. Правило Хунда.

Распределение электронов в атоме по уровням и подуровням(орбиталям) изображаются в виде электронных формул. Орбиталь с минимальной энергией - это 1s-орбиталь. Её занимает единственный электрон атома водорода, поэтому электронная формула атома водорода записывается 1s1. У гелия эл. формула 1s² . Т.к. на s-подуровне могут быть только 2 электрона, то эл.формулы последующих элементов записываются уже с заполнением последующих подуровней после s-подуровня, например бериллий 1s²2s², неон 1s²2s²2p6.

Правило Хунда: электроны располагаются на одинаковых орбиталях таким образом, чтобы суммарный спин был максимальным.

графический пример заполнения эл.орбиталей:

 

 

 

 

26.Периодический  закон с точки зрения строения  атома. Причины периодичности.

Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов. На базе современных представлений периодический закон формулируется так:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера).

Основным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Проследить периодичность свойств элементов можно и исходя из рассмотрения электронных конфигураций атомов.

Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом — физический смысл периодического закона. В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 — в первом периоде, и от 1 до 8 — во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметаллические.В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.

 

 

 

27. s,p,d,f-элементы, положение в периодической системе. Основные химические свойства.

В зависимости от того, какой подуровень последним заполняется электронами, все элементы делят на четыре типа (семейства):              1) s-Элементы: заполняется электронами s-подуровень внешнего уровня. К ним относятся первые два элемента каждого периода.        2) р-Элементы: заполняется электронами р-подуровень внешнего уровня. Это последние 6 элементов каждого периода (кроме первого и седьмого).                                                                                            3) d-Элементы: заполняется электронами d-подуровень второго снаружи уровня, а на внешнем уровне остается один или два эле трона (у Pd — нуль). К ним относятся элементы вставных декад больших периодов, расположенных между s- и р-элементами (их также называют переходными элементами).                                                    4) f-Элементы: заполняется электронами f-подуровень третьего снаружи уровня, а на внешнем уровне остается два электрона. Это лантаноиды и актиноиды.                                                                       В периодической системе s-элементов 14, р-элементов 30, d-элементов 35, f-элементов 28. Элементы одного типа имеют ряд общих химических свойств.

В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 — в первом периоде, и от 1 до 8 — во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметаллические.В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.

Свойства:     

  • энергия ионизации атомов;
  • энергия сродства атомов к электрону;
  • электроотрицательность;
  • атомные (и ионные) радиусы;
  • энергия атомизации простых веществ
  • степени окисления;
  • окислительные потенциалы простых веществ.

Информация о работе Шпаргалка по «Неорганической химии»