Автор работы: Пользователь скрыл имя, 08 Мая 2015 в 17:19, шпаргалка
1. Эквивалент. Эквивалентная масса. Эквивалентный объём (привести примеры). Закон эквивалентов.
Эквивалент – (Д.А. Князев) это реальная или условная частица вещества, которая в данной кислотно-основной реакции эквивалентна одному катиону водорода или в данной окислительно-восстановительной реакции одному электрону.
Эквивалент – (А.Н. Барышев) это масса равная 1/12 массы атома углерода или 1/2 массы атома водорода.
(!)– это такое его количество, которое присоединяет 1 моль атомов водорода или полмоля атомов кислорода
Эквивалент вещества – (П.М. Саргаев) это условная частица, в целое число раз меньшая (или равная), чем соответствующая ей структурная (или формульная) единица вещества (атом, молекула, ион), участвующая в конкретной реакции.
Эквивалент элемента – (Г.Ц. Хомченко) это такое его количество, которое присоединяет или замещает 1 моль атомов водорода.
28. Природа химической связи. Метод валентных связей.
Под химической связью понимают электрические силы притяжения, удерживающие частицы друг около друга (два или несколько атомов, ионов, молекул или любую комбинацию из них). Каждая химическая связь в структурных формулах представляется валентной чертой, например: H−H (связь между двумя атомами водорода), H3N−H+ (связь между атомом азота молекулы аммиака и катионом водорода),(K+)−(I−) (связь между катионом калия и иодид-ионом).
Химическая связь образуется за счет притяжения ядер атомов к паре электронов (обозначаются точками ··), которую в электронных формулах сложных частиц (молекул, сложных ионов) изображают валентной чертой −, в отличие от собственных, неподеленных пар электронов каждого атома, например:
:::F−F::: (F2); H−Cl::: (HCl);
..
H−N−H
|
H (NH3)
Атомы, образуя связи, приближаются к достижению наиболее устойчивой (т.е. имеющей наиболее низкую энергию) электронной конфигурации. Атомы могут достичь этого двумя способами:
Ковалентной химической связью (образуется путем обобществления пары электронов обоими атомами); Ионной связью (если атомы теряют либо приобретают электроны, образуя ионы); Металлическая связь (относится к металлам, в твердом состоянии металлы состоят из положительно заряженных ионов, плотно упакованных в кристаллическую решетку и удерживаемых вместе свободными электронами, которые «плавают» вокруг ионов в «электронном море»); Водородная связь (существенное участие принимает атом водорода (Н), уже связанный ковалентной связью с другим атомом)
Представления о механизме
образования молекулы водорода были распространены
на более сложные молекулы. Разработанная
на этой основе теория химической связи
получила название метода валентных связей
(метод ВС). В основе метода ВС лежат следующие
положения:
1) Ковалентная связь образуется двумя
электронами с противоположно направленными
спинами, причем эта электронная пара
принадлежит двум атомам.
29.
Обменный и донорно-
Обменный за счёт перекрывания одноэлектронных облаков с противоположными спинами; донорно-акцепторный за счет двухэлектронного облака одного атома и свободной орбитали другого. Обменный механизм - это когда каждый из взаимодействующих атомов поставляет по одному электрону, донорно-акцепторный механизм - это когда электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).
К обменному механизму относят случаи, когда в образовании электронной пары от каждого атома участвует по одному электрону. Связь возникает благодаря образованию общей электронной пары за счет объединения неспаренных электронов.
По донорно-акцепторному механизму происходит образование иона аммония. Донор (азот) имеет электронную пару, акцептор – (Н+) свободную орбиталь, которую пара электронная азота может занять. В ионе аммония три связи азота с водородом образованы по обменному механизму, а одна по донорно-акцепторному. Все 4 связи равноценны.
30. Ковалентная связь. Её разновидности и свойства.
Ковалентная связь – химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений. Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными. Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей. Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью. Такую связь имеют простые вещества, например: О2, N2, Cl2. Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами, то такое соединение называется ковалентной полярной связью.
Виды:
1. Простая ковалентная связь. Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.
1)Если атомы, образующие простую
ковалентную связь, одинаковы, то
истинные заряды атомов в
2) Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Если соединение образуется между двумя различными неметаллами, то такое соединение называется ковалентной полярной связью.
2. Донорно-акцепторная связь. Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов — донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.
3. Семиполярная связь.Её можно рассматривать как полярную донорно-акцепторную связь. Этот вид ковалентной связи образуется между атомом, обладающим неподелённой парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера).
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
31.Валентность
атомов в стационарном и
Валентность характеризует способность атомов элементов к образованию соединений. Валентность определяется как число химических связей, которыми атом соединен с другими. Валентность атома химического элемента не может быть выше полного числа орбиталей на внешнем уровне этого элемента. У Атома в возбуженном состояии электроны перескакивают на другие свободные орбитали и он проявляет валентность равную числу неспаренных электронов.Например, в стационарном состоянии атом углерода проявляет валентность равную 2(имеет 2 неспаренных электрона), а в возбужденном равную 4.(имеет 4 неспаренных электрона).В стационарном состоянии 2s(2)2p(2) ---->2s(1)2p(3).
Химическая связь, осуществляемая
более чем одной электронной парой, называется
кратной связью. Кратность (порядок) связи
— это число общих электронных пар, участвующих
в образовании связи. Кратная связь может
быть двойной, тройной, иметь более высокую кратность
и даже дробную кратность. Кратная связь
состоит из одной s-связи, p-связи и иногда
d-связи.
32.Гибридизация атомных орбиталей. Примеры. Пространственная конфигурация молекул с sp, sp², sp3- гибридизацией (примеры).
Гибридизация - это выравнивание атомных орбиталей по энергии с последующим их смешиванием. ΣАО = Σгибр.орб., например s + 3p + d = 5sp3d , s + 3d = 4sd3
Очень часто электроны, участвующие в образовании ковалентной связи, находятся в различных состояниях, например, один в s-, другой в p-орбиталях. Но связи в молекуле по прочности остаются равнозначны. Это объясняет представление о гибридизации атомных орбиталей, введенное в химию Л.Полингом. Гибридизацию валентных орбиталей рассмотрим на примере образования молекул хлорида бериллия BeCl2 хлорида бора BeCl3 и метана CH4.
В молекуле BeCl2 есть две связи Be—Cl. Форма этой молекулы должна быть такой, чтобы обе эти связи и атомы хлора на их концах располагались как можно дальше друг от друга:
Это возможно только при линейной
форме молекулы, когда угол между связями
(угол ClBeCl) равен 180о.
В молекуле CH4 угол НСН такой же, как в математическом тетраэдре: 109о28’.
33
Геометрическая фигура, состоящая
из 1 вершины - точка (.)
если 2(.) - отрезок, 3(.) - плоский треугольник,
4 (.) - либо плоский квадрат и его производные,
либо тетраэдр или тригональная пирамида
(искаженный тетраэдр).
33.Ионная
связь. Ненаправленность и
Ионная или электровалентная
связь - это химическая связь между ионами,
осуществляемая электростатистическим
притяжением. способ образования
на примере хлорида натрия NaCl. Электронную
конфигурацию атомов натрия и хлора можно
представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2
3р5 Как это атомы с незавершенными энергетическими
уровнями. Очевидно, для их завершения
атому натрия легче отдать один электрон,
чем присоединить семь, а атому хлора легче
присоединить один электрон, чем отдать
семь. При химическом взаимодействии атом
натрия полностью отдает один электрон,
а атом хлора принимает его. Схематично
это можно записать так: Na. — l е —> Na+
ион натрия, устойчивая восьмиэлектронная
1s2 2s2 2p6 оболочка за счет второго энергетического
уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая
восьмиэлектронная оболочка. Между ионами
Na+ и Cl- возникают силы электростатического
притяжения, в результате чего образуется
соединение. Ионная связь — крайний случай
поляризации ковалентной полярной связи.
Образуется между типичными металлом
и неметаллом. При этом электроны у металла
полностью переходят к неметаллу. Образуются
ионы.
Ионные соединения образуются при взаимодействии элементов, значительно различающихся по химическим свойствам. Чем больше удалены друг от друга элементы в периодической системе, тем в большей степени проявляется в их соединениях ионная связь.
34.Виды межмолекулярного взаимодействия.
Межмолекулярные взаимодействия (м.в.) - взаимодействия молекул между собой, не приводящее к разрыву или образованию новых хим. связей. М. в. определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов. От М. в. зависят мн. структурные, спектральные, термодинамич., теплофиз. и др. св-ва в-в. Появление понятия М. в. связано с именем Й. Д. Ван-дер-Ваальса, к-рый для объяснения св-в реальных газов и жидкостей предложил в 1873 ур-ние состояния, учитывающее М.в. (см. Ван-дер-Ваальса уравнение). Поэтому силы М.в. часто называют ван-дер-ваальсовыми. Различают три типа м.в.: ориентационное, индукционное, дисперсионное. При ориентационном взаимодействии происходит сближение полярных молекул, они ориентируются относительно друг друга противоположно заряженными концами диполей. чем более полярны молекулы, тем прочнее связь. с повышением температуры ориентационное взаимодействие ослабляется, т.к. тепловое движение нарушает ориентацию. Индукционное взаимодействие между полярной и неполярной молекулами: первая деформирует эл.облако второй. В результате у неполярной молекулы возникает временный электрический момент диполя, затем обе молекулы взаимодействуют как диполи. Индукционное взаимодействие не зависит от температуры, оно зависит от напряженности электрического поля полярной молекулы. Дисперсионное взаимодействие между двумя неполярными молекулами. В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции. На дисперсионном взаимодействии основан процесс сжижения благородных двухатомных элементарных газов.
1).Энергия