Численные методы решения систем линейных алгебраических уравнений

Автор работы: Пользователь скрыл имя, 11 Апреля 2015 в 20:30, реферат

Описание работы

Линейная алгебра, численные методы – раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры.
Среди задач линейной алгебры наибольшее значение имеют две: решение системы линейных алгебраических уравнений, определение собственных значений и собственных векторов матрицы. Другие часто встречающиеся задачи: обращение матрицы, вычисление определителя и т.д.

Файлы: 1 файл

rehcfx.docx

— 318.01 Кб (Скачать файл)

В результате получим матрицу:

Т. е. первая строка осталась без изменений, а в столбце под а1 1 на всех местах оказались нули. Обратим внимание, что преобразования коснулись всех элементов строк, начиная со второй, всей расширенной матрицы системы.

Теперь наша задача состоит в том, чтобы получить нули подо всеми диагональными элементами матрицы А – aij , где I = j.

Повторим наши элементарные преобразования, но уже для элемента α22 .

C1 -(a12 /α22 )*C2 ,

...

Cm -(αm2 /α22 )*C2 ,

т.е. Ci -(αi2 /α22 )*C2 , i = 3, ..., m.

Т. е. от каждой строки расширенной матрицы (теперь кроме первой и второй) отнимаем вторую строку, умноженную на частное от деления первого элемента этой (текущей) строки на диагональный элемент α22 .

Такие преобразования продолжаются до тех пор, пока матрица не приведется к верхнее - треугольному виду. Т. е. под главной диагональю не окажутся все нули:

Вспомнив, что каждая строка представляет собой одно из уравнений линейной системы уравнений, легко заметить, что последнее m-ое уравнение принимает вид:

γmn *xn = δm .

Отсюда легко можно найти значение первого корня – xn = δm /γmn .

Подставив это значение в предыдущее m-1-е уравнение, легко получим значение xn-1 -ого корня.

Таким образом, поднимаясь до самого верха обратным ходом метода Гаусса, мы последовательно найдем все корни системы уравнений [5].

Пример 1

Рассмотрим систему уравнений:

Главный определитель данной системы:

Δ = [1*(-4)*(-2)+2*2*1+(-1)*(-1)*(-1)]-[1*(-4)*(-1)+2*(-1)*(-2)+2*(-1)*1] = [8+4-1]-[4+4-2] = 11-6 =5,

т. е. Δ ≠ 0.

Т. е. система определена и разрешима. Решим ее по методу Гаусса.

Проведем прямой ход метода Гаусса, выписав предварительно расширенную матрицу системы:

Получим нули под главной диагональю в первом столбце расширенной матрицы. Для получения нуля в элементе a21 (т. е. под диагональю во второй строке матрицы) вторую строку матрицы преобразуем по формуле C2-(a21 /a11 )*C1 = C2 -(2/1)*C1 = C2 -2*C1 :

Аналогично поступаем и с элементом а31 (т. е. под диагональю в третьей строке матрицы). Третью строку матрицы преобразуем по формуле C3 -(a31 /a11 )*C1 = C3 -(-1/1)*C1 = C3 +C1 :

Таким образом, мы получили нули под главной диагональю в первом столбце расширенной матрицы. Осталось получить нуль под главной диагональю во втором столбце матрицы, т. е. на месте элемента а32. Для этого третью строку матрицы преобразуем по формуле C3 -(a32 /a22 )*C2 = C3 -(1/-2)*C2 = C3 +1/2C2 :

Таким образом, проведя прямой ход метода Гаусса , мы получили расширенную матрицу системы, приведенную к верхне-треугольному виду:

Эта матрица эквивалентна системе:

Обратным ходом метода Гаусса найдем корни системы. Из последнего уравнения найдем корень х3 :

-5/2x3 = 3/2,

x3 = (3/2):(-5/2) = 3/2*(-2/5) = -3/5.

Корень x3 = -3/5 найден. Подставим его в верхнее (второе) уравнение системы (-2x2 -3x3 = 1):

-2x2 -3(-3/5) = 1,

-2x2 +9/5 = 1,

-2x2 = 1-9/5,

-2x2 = -4/5,

x2 = (-4/5):(-2) = (-4/5)*(-1/2) = 2/5.

Корень x2 = 2/5 найден. Подставим его и корень х3 в верхнее (первое) уравнение системы (x1 -x2 +x3 = 0):

x1 -2/5+(-3/5) = 0,

x1 -5/5 = 0,

x1 = 5/5 = 1.

Проверка:

т. е.

т. е.

и т. д [9].

Вывод: Итак, метод Гаусса (или, иначе, метод последовательного исключения неизвестных) состоит в следующем:

1. Путем элементарных преобразований  систему уравнений приводят к  эквивалентной ей системе с  верхнее - треугольной матрицей. Эти действия называют прямым ходом.

2. Из полученной треугольной  системы переменные находят с  помощью последовательных подстановок (обратный ход).

3. При этом все преобразования проводятся над так называемой расширенной матрицей системы, которую и приводят к верхнее - треугольному виду в прямом ходе метода.

1.3 Итерация для линейных систем

Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы, подобно тому, как это делается для одного уравнения.

Для определенности ограничимся системой из четырех уравнений с четырьмя неизвестными (система четвертого порядка), которую запишем в виде:

Разрешим первое уравнение системы относительно х1 :

х1 = (-a12 /a11 )х2 -a13 /a11 х3 -a14 /a11 х4 -a15 /a11 .

Затем разрешим второе уравнение относительно х2 и т. д. Тогда систему можно переписать в виде:

гдеα = -aik /aii , i = 1, 2, 3, 4; k = 1, 2, 3, 4, 5.

Система является частным случаем записи вида:

При этом линейная функция L1 фактически не зависит от х1 .

Зададим какие-либо начальные значения неизвестных (нулевые приближения):

х1 (0) , х2 (0) , х3 (0) , х4 (0) .

Подставляя эти значения в правые части системы (*), получим первые приближения:

Полученные первые приближения могут быть так же использованы для получения вторых, третьих и т. д. приближений. Т. е. можно записать:

Условия сходимости итерационного процесса.

Установим условия, выполнение которых обеспечит сходимость получающихся приближений к истинному (точному) решению системы х1 , х2 , х3 , х4 .

Не вдаваясь в подробности, скажем, что для того чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными.

Это условие можно сформулировать и более точно [20]:

Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы :

1.4 Итерация Якоби

Рассмотрим систему линейных уравнений:

Уравнения можно записать в виде:

Это позволяет предложить следующий итерационный процесс:

или (другой вид записи)

Покажем, что если начать с точки P0 = (х1 (0) , х2 (0) , х3 (0) , х4 (0) ) = (1, 2, 2), то итерация (3) сходится к решению (2, 4, 3). Подставим х1 = 1, х2 = 2, х2 = 2 в правую часть каждого уравнения из (3), чтобы получить новые значения:

Новая точка P1 = (х1 (1) , х2 (1) , х3(1) , х4 (1) ) = (1.75, 3.375, 3), ближе, чем P0 .

Итерация, использующая (3), генерирует последовательность точек {Pk }, которая сходится к решению (2, 4, 3):

k

х1(k)

х2(k)

х3(k)

0

1.0

2.0

2.0

1

1.75

3.375

3.0

2

1.84375

3.875

3.025

3

1.9625

3.925

2.9625

4

1.990625

3.9765625

3.0

5

1.99414063

3.9953125

3.0009375

15

1.99999993

3.99999985

3.0009375

19

2.0

4.0

3.0

Информация о работе Численные методы решения систем линейных алгебраических уравнений