Автор работы: Пользователь скрыл имя, 23 Января 2013 в 21:15, контрольная работа
1.2. Симплекс-метод с искусственным базисом (М-задача).
2.2. Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества А и не менее 12 единиц питательного вещества В. Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Исходные данные приведены ниже. Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему?
4.2. Компания по продаже мототехники оценивает ежедневный спрос в 20 единиц. Годовые издержки хранения на один..
Условия задачи:
1.2. Симплекс-метод
с искусственным базисом (М-
2.2. Совхоз
для кормления животных
В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества А и не менее 12 единиц питательного вещества В. Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Исходные данные приведены ниже.
Корма
Питат. вещества |
Количество питательных веществ в 1 кг корма | |
1 |
2 | |
А В |
2 2 |
1 4 |
Цена 1 кг корма, т.руб. |
0,2 |
0,3 |
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему?
4.2. Компания по продаже мототехники оценивает ежедневный спрос в 20 единиц. Годовые издержки хранения на один мотоцикл составляют 10 тыс. руб. Магазин работает 300 дней в году. Средние издержки одного заказа составляют 40 тыс. руб. Определите совокупные издержки заказа и оптимальный размер партии. Постройте график общих годовых затрат.
Решение задачи 1.2.
Данный метод решения
Если в оптимальном решении М-задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении M-задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.
Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F, а другая – для составляющей M. При составлении симплекс таблицы полагают что исходные переменные являются небазисными, а дополнительные (xn+m) и искусственные (Ri)- базисными.
Исходная таблица для "Метода искусственного базиса" имеет следующий вид:
x1 |
x2 |
... |
xn-1 |
xn |
b | |
F |
-a0,1 |
-a0,2 |
... |
-a0,n-1 |
-a0,n |
-b0 |
xn+1 |
a1,1 |
a1,2 |
... |
a1,n-1 |
a1,n |
b1 |
xn+2 |
a2,1 |
a2,2 |
... |
a2,n-1 |
a2,n |
b2 |
Ri |
ai,1 |
ai,2 |
... |
ai,n-1 |
ai,n |
bi |
... |
... |
... |
... |
... |
... |
... |
xn+m |
am,1 |
am,2 |
... |
am,n-1 |
am,n |
bm |
M |
-∑ai,1 |
-∑ai,2 |
... |
-∑ai,n-1 |
-∑ai,n |
-∑bi |
Элементы дополнительной строки M рассчитываются как сумма соответствующих коэффициентов условий-равенств (условий в которые после приведения к каноническому виду введены переменные Ri) взятая с противоположным знаком.
Алгоритм метода искусственного базиса.
Подготовительный этап
Приводим задачу ЛП к каноническому виду
F=a0,1x1+a0,2x2+...a0,nxn +b0
a1,1x1+a1,2x2+...a1,nxn+xn+1=b
a2,1x1+a2,2x2+...a2,nxn+xn+2=b
..............................
ai,1x1+ai,2x2+...ai,nxn+Ri=bi
..............................
am,1x1+am,2x2+...am,nxn+xn+m=b
В случае если в исходной задаче необходимо найти минимум - знаки коэффициентов целевой функции F меняются на противоположные a0,n= -a0,n. Знаки коэффициентов ограничивающих условий со знаком "≥" так же меняются на противоположные. В случае если условие содержит знак "≤" или "=" - коэффициенты запишутся без изменений. К каждому условию-неравенству, при переходе к каноническому виду добавляем дополнительную переменную, xn+m , к каждому i-му условию-равенству добавляем искусственную переменную Ri.
Шаг 0. Составляем симплексную таблицу, соответствующую исходной задаче
x1 |
x2 |
... |
xn-1 |
xn |
b | |
F |
-a0,1 |
-a0,2 |
... |
-a0,n-1 |
-a0,n |
-b0 |
xn+1 |
a1,1 |
a1,2 |
... |
a1,n-1 |
a1,n |
b1 |
xn+2 |
a2,1 |
a2,2 |
... |
a2,n-1 |
a2,n |
b2 |
Ri |
ai,1 |
ai,2 |
... |
ai,n-1 |
ai,n |
bi |
... |
... |
... |
... |
... |
... |
... |
xn+m |
am,1 |
am,2 |
... |
am,n-1 |
am,n |
bm |
M |
-∑ai,1 |
-∑ai,2 |
... |
-∑ai,n-1 |
-∑ai,n |
-∑bi |
Шаг 1. Проверка на допустимость.
Проверяем на положительность элементы столбца b (свободные члены), если среди них нет отрицательных то найдено допустимое решение (решение соответствующее одной из вершин многогранника условий) и мы переходим к шагу 2. Если в столбце свободных членов имеются отрицательные элементы, то выбираем среди них максимальный по модулю - он задает ведущую строку k. В этой строке так же находим максимальный по модулю отрицательный элемент ak,l - он задает ведущий столбец - l и является ведущим элементом. Переменная, соответствующая ведущей строке исключается из базиса, переменная соответствующая ведущему столбцу включается в базис. Пересчитываем симплекс-таблицу согласно правилам.
Если же среди свободных членов есть отрицательные элементы - а в соответствующей строке - нет то условия задачи несовместны и решений у нее нет.
Если после перерасчета в столбце свободных членов остались отрицательные элементы, то переходим к первому шагу, если таких нет, то ко второму.
Шаг 2. Проверка на оптимальность.
На предыдущем этапе найдено допустимое решение. Проверим его на оптимальность. Если среди элементов симплексной таблицы, находящихся в строках M и F(не беря в расчет элемент b0 - текущее значение целевой функции и элемент -∑bi) нет отрицательных, то найдено оптимальное решение.
2.1 Положительность строки M
Если в строке M есть отрицательные элементы то решение требует улучшения. Выбираем среди отрицательных элементов строки M максимальный по модулю (исключая -∑bi)
l - столбец в котором он находиться будет ведущим. Для того, чтобы найти ведущую строку, находим отношение соответствующего свободного члена и элемента из ведущего столбца, при условии, что они неотрицательны.
bk/ak,l =min {bi/ai,l } при ai,l>0, bi>0
k - cтрока, для
которой это отношение
Пересчитываем симплекс-таблицу по формулам. Если в новой таблице после перерасчета в строке M остались отрицательные элементы переходим к шагу 2
Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена - алгоритм завершает работу.
Если в строке M и в столбце свободных членов все элементы положительные, то переходим к шагу 2.2.
2.2 Положительность строки F
Проверяем на положительность элементы строки F. Если имеются отрицательные элементы (не считая b0), выбираем среди отрицательных элементов строки F максимальный по модулю.
-a0,l=min{-a0,i }
l - столбец в котором он находится будет ведущим. Для того, что бы найти ведущую строку, находим отношение соответствующего свободного члена и элемента из ведущего столбца, при условии, что они неотрицательны.
bk/ak,l =min {bi/ai,l } при ai,l>0, bi>0
k - cтрока, для которой это отношение минимально - ведущая. Элемент ak,l - ведущий (разрешающий). Переменная, соответствующая ведущей строке (xk) исключается из базиса, переменная соответствующая ведущему столбцу (xl) включается в базис.
Пересчитываем симплекс-таблицу по формулам. Если в новой таблице после перерасчета в строке F остались отрицательные элементы переходим к шагу 2.2
Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена - алгоритм завершает работу.
Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.
Правила преобразований симплексной таблицы
При составлении новой симплекс-таблицы в ней происходят следующие изменения:
Целевая функция:
1X1+5X2+4X3-3X4→max
Условия:
2X1+7X2+1X3+0X4≤5
1X1+4X2+2X3+8X4=6
-1X1+0X2+2X3+5X4=9
Информация о работе Контрольная работа по "Экономико-математическому регулированию"