Нелинейные модели исследований операции и методы их решения

Автор работы: Пользователь скрыл имя, 27 Октября 2015 в 14:31, курсовая работа

Описание работы

Исследование операций — это составная часть теории принятия решений, включающая совокупность научных методов количественного объяснения принимаемых решений как следует структурированных задач управления.
Для задач исследования операций характерны следующие особенности:
1) объективный характер применяемых моделей объекта управления. Математические модели, применяемых в исследовании операций, считаются средством отблеска объективно имеющейся действительности, как данное имеет место в физике и прочих природных науках;

Файлы: 1 файл

Курсовая работа.docx

— 166.71 Кб (Скачать файл)

Таблица 2.3

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х4

8

4

6

1

0

1000

Х5

240

200

160

0

1

280000


 

А) Обнаружили какое-либо неотрицательное базисное решение: Х4 =1300, Х5 = 190000. По заданию продолжаем отыскивать базисные решения. Разрешающим составляющей подбираем в 1 строчке – Х2. В соответствии с этим вся строчка разделяется на 8, а все другие составляющие пребывают по правилу прямоугольника.

Таблица 2.4

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х4

8

4

6

1

0

1000

Х5

240

200

160

0

1

280000

Х2

¾

1

½

1/8

0

325/2

Х5

90

0

60

-25

1

157500


 

Б) Обнаружили какое-либо неотрицательное базисное решение: Х2 =325/2, Х5 =157500. По заданию продолжаем отыскивать базисные решения. Разрешающим составляющим избираем в 1 строчке – Х1. В соответствии с этим вся строчка разделяется на 3/4, а все другие составляющие присутствуют по правилу прямоугольника.

 

Таблица 2.5

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х2

¾

1

½

1/8

0

325/2

Х5

90

0

60

-25

1

157500

Х1

1

4/3

2/3

1/6

0

650/3

Х5

0

-120

0

-40

1

138000


 

В) Нашли некоторое неотрицательное базисное решение: Х1 =650/3, Х5 =138000. По заданию продолжаем искать базисные решения. Разрешающим элементом выбираем в 1 строке – Х3. Соответственно вся строка делится на 2/3, а все остальные элементы находятся по правилу прямоугольника.

 

 

 

Таблица 2.6

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х1

1

4/3

2/3

1/6

0

650/3

Х5

0

-120

0

-40

1

138000

Базисные переменные

Х1

Х2

Х3

Х4

Х5

Свободный член

Х3

3/2

2

1

1/4

0

325

Х5

0

-120

0

-40

1

138000


 

Г) Обнаружили некоторое неотрицательное базисное решение: Х5 =138000, Х3 =325. Найдены все неотрицательные базисные решения.

2. Находим получаемый  продукт.

Х1= 6*0+8*0+4*0=0

Х2=240*0+200*0+160*0=0

У1=3*00,4*00,6=0

У2=5*00,5*00,5=0

У3=8*00,6*00,4=0

F1=0+0+0=0

Х1= 6*0+8*325/2+4*0=1300

Х2=240*0+200*325/2+160*0=32500

У1=3*13000,4*325000,6=26904,728

У2=5*13000,5*325000,5=32500

У3=8*13000,6*325000,4=37688,542

F2=26904,728 +32500 +37688,542 = 97093,27

Х1= 6*650/3+8*0+4*0=1300

Х2=240*650/3+200*0+160*0=52000

У1=3*13000,4*520000,6=35699,794

У2=5*13000,5*520000,5=41109,610

У3=8*13000,6*520000,4=45483,862

F3= 35699,794+ 41109,610+ 45483,862= 122263,266

Х1= 6*0+8*0+4*325=1300

Х2=240*0+200*0+160*325=52000

У1=3*13000,4*520000,6=35699,794

У2=5*13000,5*520000,5=41109,610

У3=8*13000,6*520000,4=45483,862

F3= 35699,794+ 41109,610+ 45483,862= 122263,266

F1 < F2

F2 < F3

F3 = F4

Ответ: Fmax= 122263,266

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

В данной работе мы рассмотрели методы решения задач нелинейным методом.

Для задач исследования операций характерны следующие особенности:

1) объективный характер применяемых моделей объекта управления. Математические модели, применяемых в исследовании операций, считаются средством отблески беспристрастно имеющейся действительности, как данное имеет место в физике и прочих природных науках; 
        2) заявки на проведение исследований выделяет управляющий, построение же модели воплотят в жизнь специалисты, которые и отыскивают решение. Глава при всем при этом сможет выдавать вспомогательную информацию, хотя его роль тут, в сути, не различается от роли иных работников организации. Основная проблема управляющего — ввести приобретенное решение;

        3) заявки нсуществует объективный аспект удачи в использовании методов исследования операций. В случае если проблема, требующая решения, светла, аспект определен, то незамедлительно заметно, как отысканное подходящее решение лучше имеющегося.

Задача нелинейного программирования (задача НП) в общем виде формулируется так:

Максимизировать ƒ(x1,x2,…,xn) при ограничениях

 

 

                                       ……………………..

 

 

где функции   нелинейные.

В отличие от задачи ЛП для задач НП нет универсального метода решения.

В задаче ЛП разрешенное большое количество R постоянно считается выпуклым с окончательным количеством последних точек. В следствии этого воспользовавшись симплекс-методом и перебрав лишь последние точки, возможно за окончательное количество шагов отыскать подходящее решение. В задачах НП, напротив, выпуклость возможного множества и конечность количества его последних точек абсолютно необязательны. Именно это работает предпосылкой главной проблемы решения задач НП.

Задачами нелинейного программирования (сокращенно задачами НЛП) называются, когда из числа f,g1...gm,h1...,hk наличествует даже одна нелинейная функция. Записи (1)-(3) и (4)-(5) считаются типовыми постановками задач минимума и максимума (обратите внимание на символы неравенств в (2) и (5)).

Задачи НЛП, как и любые другие задачи оптимизации, являются математическими моделями некоторых практических задач принятия решения.

Введя функции , задачу (4)-(6) на максимум возможно записать повторяющий вид задачи на минимум. Потому, как правило, будем заявлять о задаче на минимум, обращаясь к задаче на максимум только в требуемых вариантах.

В задаче (1)-(3) - целевая функция. – допустимое множество (множество допустимых точек).

Решить задачу (1)-(3) это значит:

а) либо найти точку минимума (оптимальное решение ;

б) либо убедиться, что задача (1)-(3) не имеет оптимального решения (функция f не ограничена снизу на X или X=Æ).

Когда минимум функции f не достигается на множестве X (разрывность f, открытость или же неограниченность X), то взамен задачи (1)-(3) ставится обобщенная задача: f(х) ® inf при лимитированиях (2)-(3) решение коей повторяющий вид минимизирующей очередности практически постоянно присутствует.

Скажем в хоть какой теории принятия решения, перед доктриной нелинейной оптимизации стоят последующие три главные трудности:

1) проблема существования  рационального решения;

2) проблема установления нужных и необходимых показателей оптимальности (отличительных качеств, свойственных точкам минимума и максимума);

3) исследование приемов вычисления подходящих решений (методов решения задач НЛП).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

  1. Гончаров В.А. Методы оптимизации. Высшее образование.2009 г. –73 с.;138с.
  2. Зайцев М.Г. Методы оптимизации управления и принятия решений: примеры, задачи, кейсы, Дело. 2011г. – 91с.
  3. Горлач Б.А. Исследование операций: Учебное пособие.- СПБ.:             Издательство «Лань», 2013. — 448 с.
  4. Рыжков И.Б. Основы научных исследований и изобретательства: Учебное пособие. — СПб.: Издательство «Лань», 2012. — 224 с.
  5. Васильев Ф.П. Методы оптимизации: В 2-х кн. _ Новое изд., перераб. и доп. _ М.:МЦНМО, 2011. —620 с.
  6. Ржевский С. В. Исследование операций: Учебное пособие. — СПб.: Издательство «Лань», 2013. — 480 с.
  7. Есипов Б. А. Методы исследования операций: Учебное пособие. —  2-е изд., испр. и доп. — СПб.: Издательство «Лань», 2013. — 304 с.
  8. Токарев В.В. Методы оптимальных решений. В 2т. Т.2. Многокритериальность. Динамика. Неопределенность. - 3-е изд., испр. и доп. - М. : ФИЗМАТЛИТ, 2012. - 420с.
  9. Соколов А.В., Токарев В. В. Методы оптимальных решений. Общие положения. Математическое программирование / А.В. Соколов, В. В. Токарев. — 3-е изд., испр. и доп. - М.: Издательство «Физматлит», 2012. 564 с.
  10. Токарев В. В. Модели и решения: Исследование операций для экономистов, политологов и менеджеров / В. В. Токарев. — М.: ФИЗМАТЛИТ, 2014. — 408 с.
  11. Дякина Б.Г. Математические методы исследований в экономике: Учебное пособие / Под ред. Ф.Л. Шарова. - 3-е изд., доп. и перераб. - М.: МИЭП, 2010. - 192с.
  12. Балдин К.В. Математическое программирование: Учебник / К.В. Балдин, Н.А. Брызгалов, А.В. Рукосуев. / Под общ. Ред. д.э.н., проф К.В. Балдина. - М.: Издательство-торговая корпорация «Дашков и К°», 2013. - 220 с.
  13. Балдин К. В. Математические методы и модели в экономике : учебник / К. В. Балдин, В. Н. Башлыков, А. В. Рукосуев; под общ. ред. К. В. Балдина. - М.: ФЛИНТА : НОУ ВПО «МПСИ», 2012. -   328 с.
  14. Юрьева А. А. Математическое программирование: Учебное пособие / А. А. Юрьева. — 2-е изд., испр. и доп. — СПб.: Издательство «Лань», 2014. — 432 с.

 

 

 

 

 


Информация о работе Нелинейные модели исследований операции и методы их решения