Автор работы: Пользователь скрыл имя, 17 Ноября 2014 в 23:17, курсовая работа
Задача: рассмотреть влияние показателей рождаемости, смертности и численности пожилого населения в разных странах мира на общую численность населения этих стран.
Цель работы – проверка регрессионной модели на гетероскедастичность (т.к. эта проблема в большей степени присуща пространственным данным и редко встречается во временных рядах).
Введение
Теоретический раздел
Аналитический раздел
Построение базовой регрессионной модели и оценка её качества
Исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка
Устранение гетероскедастичности в модели
Заключение
Список использованных источников
Министерство образования Республики Беларусь
Белорусский Государственный Университет
Экономический факультет
Кафедра Экономической и институциональной экономики
Курсовой проект
По дисциплине «Эконометрика и прогнозирование»
На тему
Выполнила
Студентка третьего курса
Отделения «Экономическая теория»
Волкова Ольга Александровна
Научный руководитель:
Абакумова Юлия Георгиевна
Минск, 2008 г.
Содержание
Введение
Теоретический раздел
Аналитический раздел
Построение базовой регрессионной модели и оценка её качества
Исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка
Устранение гетероскедастичности в модели
Заключение
Список использованных источников
Введение
Вся история развития человечества неразрывно связана с изменениями динамики численности и воспроизводства населения. Современные очень высокие темпы роста численности населения мира в решающей степени определяются темпами его увеличения в развивающихся странах.
Современный «взрыв» населения в развивающихся странах имеет существенные особенности. Главная особенность заключается в том, что если в Европе быстрый рост населения был обусловлен в первую очередь социально-экономическими изменениями, т.е. следовал за экономическим ростом и изменениями в социальной сфере, то в развивающихся странах мы наблюдаем прямо противоположную картину: быстрый рост населения значительно опережает их экономическое и социальное развитие, усугубляя тем самым и без того ложные проблемы занятости, социальной сферы, обеспечения продовольствием, экологии.
Наряду с наблюдаемым во второй половине XX века демографическим взрывом проявился и демографический кризис, затронувший в первую очередь развитые страны мира.
Суть современного демографического кризиса заключается не только в резком ухудшении развития народонаселения, что выражается в резком уменьшении темпов роста численности населения в развитых странах, а в некоторых из них и снижении этого показателя за нулевую отметку, но и в определенном кризисе института семьи, в некотором ухудшении качества развития населения, в демографическом старении.
Наблюдаемая в развитых странах мира тенденция к резкому падению рождаемости значительно ниже уровня, обеспечивающего простое воспроизводств населения, ведет к значительному демографическому старению, сокращению трудовых ресурсов и увеличению «экономической нагрузки» на экономически активное население, на старение населения или увеличение доли пожилых и старых людей.
Итак, изменение показателя общей численности населения происходит под воздействием целого ряда прямых и косвенных факторов. В своей работе я бы хотела рассмотреть влияние показателей рождаемости, смертности и численности пожилого населения в разных странах мира на общую численность населения этих стран.
Такой выбор обусловлен, в первую очередь, целью моей работы – проверка регрессионной модели на гетероскедастичность (т.к. эта проблема в большей степени присуща пространственным данным и редко встречается во временных рядах).
Таким образом построенная мною модедь содержит следующие объясняющие переменные:
X1 – численность рожденных детей за 2007г. (чел.),
X2 – численность умерших за 2007г. (чел),
Х3 – численность населения в возрасте от 65 лет и старше (чел.), и объясняемую переменную:
Y – общая численность населения на начало 2008г. (чел.).
Статистические данные по странам взяты за период 2007г, влияющие на общую численность населения начала 2008г. (Таблица 1)
Страны |
Общая численность населения на начало года |
X1- численность рожненных детей за 2007г. |
X2 - смертность за 2007г. |
X3 - численность населения старше 65 лет за 2007г. |
Бельгия |
10666866 |
120663 |
374.0553 |
1824034.086 |
Болгария |
7640238 |
75349 |
693.2108 |
1321761.174 |
Чехия |
10381130 |
114632 |
355.3592 |
1484501.59 |
Дания |
5475791 |
64082 |
256.328 |
837796.023 |
Германия |
82221808 |
682700 |
2594.26 |
16279917.98 |
Эстония |
1340935 |
15775 |
78.875 |
229299.885 |
Ирландия |
4419859 |
70623 |
261.3051 |
490604.349 |
Греция |
11214992 |
110048 |
418.1824 |
2085988.512 |
Испания |
45283259 |
488335 |
1806.8395 |
7562304.253 |
Франция |
63753140 |
816500 |
3102.7 |
10328008.68 |
Италия |
59618114 |
563236 |
2140.2968 |
11864004.69 |
Кипр |
794580 |
8529 |
52.8798 |
97733.34 |
Латвия |
2270894 |
23273 |
202.4751 |
388322.874 |
Литва |
3366357 |
32346 |
190.8414 |
525151.692 |
Люксембург |
483799 |
5477 |
9.8586 |
67731.86 |
Венгрия |
10045000 |
97600 |
575.84 |
1597155 |
Мальта |
410584 |
3871 |
25.1615 |
56660.592 |
Нидерланды |
16404282 |
180882 |
741.6162 |
2378620.89 |
Австрия |
8331930 |
76250 |
282.125 |
1408096.17 |
Польша |
38115641 |
387873 |
2327.238 |
5107495.894 |
Португалия |
10617575 |
102492 |
348.4728 |
1836840.475 |
Румыния |
21528627 |
214728 |
2576.736 |
3207765.423 |
Словения |
2025866 |
19636 |
60.8716 |
322112.694 |
Словакия |
5400998 |
54424 |
331.9864 |
642718.762 |
Финляндия |
5300484 |
58729 |
158.5683 |
874579.86 |
Швеция |
9182927 |
103421 |
258.5525 |
1597829.298 |
Великобритания |
61185981 |
770651 |
3467.9295 |
9789756.96 |
Турция |
70586256 |
1361000 |
29533.7 |
4658692.896 |
Исландия |
314321 |
4508 |
6.3112 |
36775.557 |
Норвегия |
4737171 |
58459 |
181.2229 |
691626.966 |
Швейцария |
7591414 |
74440 |
290.316 |
1229809.068 |
Табл. 1
Теоретический раздел
При практическом проведении регрессионного анализ модели с помощью МНК необходимо обращать внимание на проблемы, связанные с выполнимостью свойств случайных отклонений модели, т.к. свойства оценок коэффициентов регрессии напрямую зависят от свойств случайного члена в уравнении регрессии. Для получения качественных оценок необходимо следить за выполнимостью предпосылок МНК (условий Гаусса-Маркова), т.к. при их нарушении МНК может давать оценки с плохими статистическими свойствами.
Одной из ключевых предпосылок МНК является условие постоянства дисперсий случайных отклонений: т.е. D( εi ) = D( εj ) = σ2 для любых наблюдений i и j. Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсий отклонений).
Наличие гетероскедастичности может привести к снижению эффективности оценок, полученных по МНК, к смещению дисперсий, к ненадежности интервальных оценок, получаемых на основе соответствующих t- и F-статистик. Таким образом, статистические выводы, получаемые при стандартных проверках качества оценок, могут быть ошибочными и приводить к неверным заключения по построенной модели. Вполне вероятно, что стандартные ошибки коэффициентов будут занижены, а следовательно можно признать статистически значимыми коэффициенты, которые таковыми не являются. Причиной гетероскедастичности могут быть выбросы (резко выделяющиеся наблюдения), ошибки спецификации модели, ошибки в преобразовании данных, ассиметрия распределения какой-либо из объясняющих переменных. Чаще всего, появление проблемы гетероскедастичности можно предвидеть и попытаться устранить этот недостаток еще на этапе спецификации. Однако обычно приходиться решать эту проблему уже после построения уравнения регрессии. Не существует какого-либо однозначного метода определения гетероскедастичности. Существует довольно большое количество тестов и критериев, наиболее популярными и наглядными из которых являются: графический анализ отклонений, тест ранговой корреляции Спирмена, тест Парка, тест Глейзера, тест Голдфельда-Квандта и тест Уайта. Моя работа посвящена исследованию поледних двух тестов.
Тест Уайта
Алгоритм этого теста заключается в том, что сперва оценивается исходная модель и определяются остатки εi , затем строится вспомогательно уравнение регрессии и определяется его коэффициент детерминации, произведение n*R^2 сравнивается со значением χ^2- распределения и делается вывод о наличии или об отсутствии гетероскедастичности.
Тест Парка
Парк в свою очередь предложил следующую функциональную зависимость:
Алгоритм теста:
1) Оцениваем исходное уравнение и определяем ei.
2) Оцениваем уравнение
Проверяем статистическую значимость коэффициента β уравнения на основе статистики
Если β значим, то гетероскедастичность. Если нет, то гомоскедастичность.
Тест Бреуша-Пагана-Годфри
Строится оценка:
Если
При установлении присутствия гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Сначала можно попробовать устранить возможную причину гетероскедастичности, скорректировав исходные данные, затем попробовать изменить спецификацию модели, а в случае, если не помогут эти меры, использовать метод взвешенных наименьших квадратов.
Далее в работе проведем довольно полный анализ базовой модели, включая непосредственно тесты на обнаружение гетероскедастичности.
Аналитический раздел
1. Построение базовой регрессионной модели и оценка её качества
По данным Таблицы 1 построим исходную модель с помощью пакета Eviews3.1. Получим следующее уравнение построенной модели:
Где:
Population – общая численность населения на начало 2008г. (чел.),
Birth – численность рожденных детей за 2007г. (чел.),
Mortality – численность умерших за 2007г. (чел),
Old – численность населения в возрасте от 65 лет и старше (чел.).
Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику:
Используем в данном случае уровень значимости . Тогда критическое значение t-статистики соответственно:
Значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.
Продолжая оценивать общее качество модели, используем критерий Фишера:
Н0: R-квадрат=0
Н1: R-квадрат>0
Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна. Поскольку значение F-наблюдаемого велико, можно сделать предположение о наличии мультиколлинеарности, что будет проверено мною в дальнейшем.
Оценим также распределение остатков в модели:
P (J-B) = 0,06, следовательно присутствует нормальное распределение остатков.
Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.
1) Первоначально воспользуемся тестом Бреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:
Запишем значение распределения для последующего сравнения с Obs* R-squared:
Приведем результаты теста с lag = 1:
с lag = 2:
с lag = 3:
Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше
а P-вероятность статистики Бреуша-Годфри больше уровня значимости
( )
2) Воспользуемся также тестом Дарбина-Уотсона:
Приведем значение статистики:
Значения критических точек
при уровне значимости :
Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-W в данном случае близко к 2.
Выполним проверку регрессионной модели на мультиколлинеарность.
Построим корреляционную матрицу коэффициентов:
Найдем частные коэффициенты корреляции:
Делаем вывод о наличии высокой зависимости (коллинеарности) между переменными в каждом из трех случаев. Следовательно в модели присутствует мультиколлинеарность. Эта проблема оказывает определенное влияние на качество модели, однако ее устранение не является обязательным этапом, поэтому перейдем к дальнейшему исследованию качества регрессионной модели.