Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка

Автор работы: Пользователь скрыл имя, 17 Ноября 2014 в 23:17, курсовая работа

Описание работы

Задача: рассмотреть влияние показателей рождаемости, смертности и численности пожилого населения в разных странах мира на общую численность населения этих стран.
Цель работы – проверка регрессионной модели на гетероскедастичность (т.к. эта проблема в большей степени присуща пространственным данным и редко встречается во временных рядах).

Содержание работы

Введение
Теоретический раздел
Аналитический раздел
Построение базовой регрессионной модели и оценка её качества
Исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка
Устранение гетероскедастичности в модели
Заключение
Список использованных источников

Файлы: 1 файл

bestreferat-193382.docx

— 339.83 Кб (Скачать файл)

 

Переходим непосредственно к основной теме курсвой - проверяем модель на наличие гетероскедастичности. Для этого первоначально проведем тест Вайта и оценим его результаты:

 

 

 

 

 

Т.к. значение P- вероятности в обоих случаях теста Уайта (no cross terms/ cross terms) меньше уровня значимости

 

( ) и Obs*

 

R-squared превышает

 

 

то принимаем гипотезу о наличии гетероскедастичности в модели.

Дополнительно можно использовать графический анализ ряда остатков, который подтверждает вывод о наличии гетероскедастичности, т.к. график имеет выбросы и не укладывается в полосу постоянной ширины, параллельную оси ОХ (-1000000,1000000).

 

 

 

Таким образом, в этой модели мы имеем две проблемы – мультиколлинеарность и гетероскедастичность, в связи с чем нельзя доверять статистическим выводам и оценкам качества регрессионной модели. Продолжим дальнейший анализ модели с помощью теста Парка. Данный тест не предполагает особой свободы выбора и мы строим три регрессионные модели натуральных логарифмов остатков базовой модели на натуральные логарифмы каждой объясняющей переменной отдельно.

Представим вспомогательную модель 1 теста Парка:

Запишем уравнение вспомогательной модели 1:

 

 

 

 

Где:

POPUL2=ln (population^2)

BIRTH2=ln(birth).

Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику:

 

 

Найдем критическое значение t-статистики на уровне значимости

 

( )

 

После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Birth в следствие того, что коэффициент при данной переменной является значимым.

Представим вспомогательную модель 2 теста Парка:

 

 

Где:

POPUL2=ln (population^2)

MORTALITY2=ln(mortality).

Запишем уравнение вспомогательной модели 2:

 

 

Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости ( )

 

После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Mortality в следствие того, что коэффициент при данной переменной является значимым.

Представим вспомогательную модель 3 теста Парка:

 

 

Где:

POPUL2=ln (population^2)

OLD2=ln(old).

Запишем уравнение вспомогательной модели 2:

 

 

Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости ( )

 

 

После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Old в следствие того, что коэффициент при данной переменной является значимым.

Оценив каждую переменную по тесту парка в отдельности подтверждаем выводы сделанные ранее по тесту Вайта о гетероскедастичности исходной модели.

Теперь используем тест Бреуша-Пагана для окончательного подтвержения гетероскедастичности. Для начала строим временной ряд квадратов остатков, деленных на величину

 

 

а затем строим для него саму регрессионную модель.

 

 

 

Находим необходимые для анализа параметры вспомогательной регрессии:

 

 

Делаем вывод об очевидном присутствии в модели гетероскедастичности, так как

 

>>

Устранение гетероскедастичности в модели

 

После проведения тестов Вайта, Бреуша-Пагана-Годфри и Парка было выявлено очевидное наличие проблемы гетероскедастичности остатков в базовой модели регрессии. Приступим к ее устранению при помощи веса, выбранного соответственно тесту Бреуша-Пагана. Предпологаем форму выявленной гетероскедастичности:

 

Вес:

 

Оцененная с помощью метода взвешанных наименьших квадратов базовая регрессия выглядит следующим образом:

 

 

Получим следующее уравнение построенной модели-NEW:

 

 

Где переменные, скорректированные на вес:

 

PopulationNEW – общая численность населения на начало 2008г. (чел.),

cNEW – константа базовой модели, деленная на вес,

BirthNEW – численность рожденных детей за 2007г. (чел.),

MortalityNEW – численность умерших за 2007г. (чел),

OldNEW – численность населения в возрасте от 65 лет и старше (чел.).

 

Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику. Используем в данном случае уровень значимости . Тогда критическое значение t-статистики соответственно:

 

 

Если значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. Лишь одна переменная, являющаяся в прошлой базовой модели константой в данном случае незначима, что логично, ведь она не имеет реального смысла, т.е. не описывает реальным образом объясняемую переменную. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.

Продолжая оценивать общее качество модели, используем критерий Фишера:

 

 

 

Н0: R-квадрат=0

Н1: R-квадрат>0

Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна.

Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.

1) Первоначально  воспользуемся тестом Бреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:

Запишем значение распределения для последующего сравнения с Obs* R-squared:

 

 

Приведем результаты теста с lag = 1:

 

с lag = 2:

с lag = 3:

 

Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше

 

 

а P-вероятность статистики Бреуша-Годфри больше уровня значимости

 

( )

 

2) Воспользуемся  также тестом Дарбина-Уотсона:

Приведем значение статистики:

 

 

Значения критических точек

 

при уровне значимости :

 

 

Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-W в данном случае близко к 2.

Проверим скорректированную модель на наличие гетероскедастичности с помощью теста Вайта

 

 

 

 

 

Т.к. значение P- вероятности в обоих случаях теста Уайта (no cross terms/ cross terms) больше уровня значимости

 

( )

 

и Obs* R-squared превышает

 

 

то принимаем гипотезу об отсутствии гетероскедастичности в модели (гомоскедастичность).

 

 

Заключение

 

В моей курсовой работе я построила регрессионную модель по реальным данным. Я разбиралась с моделью зависимости общей численности населения от показателей рождаемости, смертности и численности пожилого населения, их влиянием друг на друга и на объясняемую переменную. Так как целью моей работы являлось проверить, как работают на практике тесты Уайта и Бреуша-Пагана-Годфри и Парка, то я использовала пространственные данные, которые позволяют наиболее наглядно проиллюстрировать проблему гетероскедастичности и способы ее устранения.

В работе достаточно наглядно продемонстрирована работа тестов для выявления гетероскедастичности, также удалось решить задачу с выбором веса для ВНК.

В ходе курсовой работы мне удалось скорректировать модель с помощью метода взвешенных наименьших квадратов, правильно подобрав вес при помощи теста Бреуша-Пагана, поскольку тест Вайта, к примеру, не дает нам точного ответа на вопрос о весе для ВНК. Построенная в конце моего исследования модель-NEW значима и является качественной, остатки ее в свою очередь гомоскедастичны.

 

 

Список использованных источников:

 

  1. Бородич С.А. Вводный курс эконометрики: Учеб. пособие. – Мн.; БГУ, 2000. – 209, 227, 245 с.
  2. Бородич С.А. Эконометрика: Учеб. пособие. – Мн.; Новое знание, 2006. – 237, 238 с.
  3. Доугерти К. Введение в эконометрику: Пер. с англ. – М.; ИНФРА-М, 1997.
  4. Данные Eurostat http://epp.eurostat.ec.europa.eu/potal.

Информация о работе Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка