Теория массового обслуживания

Автор работы: Пользователь скрыл имя, 01 Декабря 2014 в 20:40, курсовая работа

Описание работы

Целью курсовой работы является изучение теории массового обслуживания и принятия решений.
Исходя из цели, задачи курсовой работы:
1) рассмотрение элементов теории массового обслуживания и принятия решений;
2) проанализировать расчет основных параметров в моделях массового обслуживания
3) решить задачу «Бери и кати»

Содержание работы

Введение………………………………………………………………………...…5
1 Элементы теории массового обслуживания и принятия решений……..…...7
1.1 Основные положения теории массового обслуживания.………………......7
1.2 Принятие решений в экономике с использованием моделей массового обслуживания………………………………………………………………….....11
2 Расчет основных параметров в моделях массового обслуживания………...14
2.1 Постановка и математические модели задач………………….…………...14
2.2 Определение основных параметров процессов…………………………....18
3 Решение задачи «Бери и кати…………………………………………….…...27
Заключение ………………………………………………………………………30
Глоссарий………………………………………………………………………...32
Список используемых источников …………………………………………….34

Файлы: 1 файл

Teoria_massovogo_obsluzhivania_i_modeli_prinyatia (1).docx

— 285.63 Кб (Скачать файл)

Формула (37) позволяет находить все интересующие числовые характеристики длительности ожидания. В частности, математическое ожидание длительности ожидания начала обслуживания или, как предпочитают говорить, средняя длительность ожидания равна

,   (38)

Несложные вычисления приводят к формуле

,      (39)

Дисперсия величины равна

,    (40)

Формула (40) даёт среднюю длительность ожидания одного требования. Найдем среднюю потерю времени требованиями, пришедшими в систему обслуживания в течение промежутка времени T. За время T в систему поступает требований и среднем; общая потеря ими времени па ожидание в среднем равна

     (41)

Приведем небольшие арифметические подсчеты, которые продемонстрируют нам, как быстро возрастают суммарные потери времени па ожидание с изменением величины . При этом мы ограничиваемся случаем Т=1 и рассматриваем лишь самые малые значения т: т=1 и т=2.

При т=1 в силу (28)

,     (42)

При р=0,1; 0,4; 0,6; 0,9 значение а приблизительно равно 0,011; 0,267; 0,9; 8,100.

При m=2 в силу (41)

,     (43)

При =0,1; 0,9; 1,3; 1,8 значение а приблизительно равно 0,00025; 0,229; 0,951; 7,674.

Приведённые данные иллюстрируют хорошо известный факт относительно большой чувствительности систем обслуживания, уже достаточно сильно загруженных, к возрастанию загрузки. Потребитель при этом сразу ощущает значительное возрастание длительности ожидания. Этот факт обязательно следует учитывать при расчёте загрузки оборудования в системах массового обслуживания /12, 67 с./.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Решение задачи «Бери и кати»

 

Условие:

В полуавтоматическом бистро для автомобилистов «Бери и кати» робот-кёльнер выдает подогретый бутерброд и чашку горячего кофе  за 5 минут. Оценки показывают, что поток клиентов – 20 машин/ в час. Компания хочет оценить длину очередей автомобилей к автомату, для обеспечения необходимого пространства для них.

Предполагая пуассоновский поток заявок и экспоненциальное распределение для времени обслуживания найти:

a. Долю времени, когда  робот загружен;

b. Долю времени, когда  он бездействует;

c. Среднее число машин  у робота-кёльнера;

d. Среднее число машин  в очереди у робота-кёльнера;

e. Среднее время, затрачиваемое  клиентом для получения бутерброда  и чашки чая;

f. Среднее время, которое  клиент проводит в очереди;

g. С какой вероятностью  возле банкомата будут стоять  более 3 машин.

Решение:

Определим модель системы массового обслуживания,применимую для данного случая. Наиболее важные обстоятельства в этом случае-  наличие небольшего числа  клиентов или ограничения на размер очереди.

Так как никаких упоминаний о подобных ограничениях в задаче нет, считаем, что имеем дело с моделью неограниченной очереди. Кроме того, речь идет только об одном роботе , т.о. в системе имеется только один сервер.

Поток клиентов λ, прибывающих на вход в систему, равен 20 машинам в час. Кроме этого известно, что на обслуживание клиента в среднем тратится 5 минуты. Это означает, что за час в среднем обслуживается  12 клиентов, т.е. поток обслуживания μ равен 12 машин в час.

Расчеты представлены на рисунке 1.

Рисунок 1  Расчеты по формулам теории СМО

Доля времени, когда банкомат загружен равна проценту загрузки каждого (в нашем случае единственного) сервера, т.е 66% всего времени работы.

Разумеется, это средняя оценка, которую можно было бы сделать по многим наблюдениям за системой. Доля времени, когда банкомат бездействует, равна времени, когда все серверы свободны – 34% рабочего времени. Среднее число машин у банкомата соответствует числу клиентов в системе –2 клиента. В это число входит и та машина, которая стоит у банкомата и те, которые ждут своей очереди на подъездной дорожке;

Средняя длина очереди – 1, 33 клиента – показывает среднее число машин в очереди у робота - кёльнер.

В среднее время, затрачиваемое клиентом для получения заказа, входит и время, затраченное на ожидание в очереди, и время, которое клиент тратит на заказ и его ожидание (2  минуты в среднем), т.е. это полное время пребывания в системе. Это время приводится в таблице в тех же единицах, для которых задан поток – в часах. Следовательно, это время равно 0.1 часа или 6 минут. Среднее время, которое клиент проводит в очереди равно 0.06 часа или  3 минуты.

В нижней части таблицы приведены вероятности нахождения в системе

заданного числа клиентов (от 1 до 20, но часть строк скрыта для экономии места).

Вероятность того, что у банкомата будет стоять не более 3 машин, т.е либо ни одной (% времени, когда все серверы свободны), либо одна, либо две, либо три машины можно легко найти, сложив соответствующие вероятности: Pn<=3 = 0,2222222+ 0,1481481+ 0,0987654+ 0,0658436= 0,5349794 или 53 %

 После этого можно  определить и вероятность того, что в очереди будет более  трех машин Pn>3, как 1 -Pn<=3. Pn>3= 43%. Очевидно, что другой возможный путь – суммирование всех вероятностей для n>3 – гораздо менее удобен, но тоже применим, особенно если эти вероятности быстро падают до нуля. В данной задаче это не так, потому что даже вероятность того, что в системе n=20 клиентов отлична от нуля.

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

В этой работе раскрыты понятия, приводящие к системе массового обслуживания, а именно: обслуживание, обслуживает прибор система обслуживания, система массового обслуживания.

Также описаны типичные элементы, из которых состоят системы массового обслуживания (входящий поток, его описание и основные особенности, очередь и ее дисциплина, обслуживающие приборы и особенности механизма обслуживания, входящий поток).

Что касается практического задания, то рассмотренное данной задачей автозаправочная станция является СМО с ожиданием. На её примере я определила: вероятность отказа, относительную и абсолютную пропускную способности АЗС, среднее число машин, ожидающих заправки, среднее число машин, находящихся на АЗС (включая обслуживаемые), среднее время ожидание машины в очереди, среднее время пребывания машины на АЗС (включая обслуживание).

 

 

 

 

 

 

 

 

 

 

 

 

Глоссарий

 

 

Системы массового обслуживания (СМО)

это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания

Дисциплина очереди 

 это важный компонент  системы массового обслуживания, определяющий  принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания

Механизм обслуживания

определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы

Абсолютная пропускная способность

среднее число заявок, которое может обслужить система массового обслуживания в единицу времени

Дисперсия

cреднее арифметическое из квадратов отклонений величин xi от их среднего арифметического

Интенсивность нагрузки

показывает степень согласования входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Канал обслуживания

Совокупность средств, которые осуществляют обслуживание заявок


 

 

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

 

  1. Баканов, М.И., Теория экономического анализа. /М.И. Баканов, А.Д. Шеремет - Москва: Финансы и статистика, 2008. – 401 с.
  2. Басовский, Л.Е., Теория экономического анализа. / Л.Е. Басовский. - Москва: Инфра-М, 2007.- 222с.
  1. Баширов И.Х. Математики в маркетинге. / И.Х. Баширов, Е.В. Винда, Г.А. Гришин. – Санкт-Петербург: Реком, 2009.- 104 с.

  1. Гиляровская, Л.Т., Экономический анализ. / Л.Т. Гиляровская - Москва: ЮНИТИ-ДАНА, 2008.-615с.
  2. Зенкина, И.В., Теория экономического анализа: учеб. пособ. /И.В. Зенкина - Москва: Дашков и Ко, 2008.-208с.
  1. Кемени Дж. Введение в конечную математику. / Дж. Кемени, Дж. Снелл. – Москва: Наука, 2008.-652с

  1. Любушкин Н.П. Теория экономического анализа. / Н.П. Любушкин. - Москва: Юристъ, 2009.-479 с.
  2. Монахов А.В. Математические методы анализа экономики. / А.В. Монахов.Санкт-Петербург: Питер, 2008. - 176с.
  3. Шеремет А.Д. Теория экономического анализа. / А.Д. Шеремет. - Москва: Инфра-М, 2008.-367с.
  1. А. Хэмди Таха. Введение в исследование операций. / А. Хэмди Таха. –Москва: Вильямс, 2008.- 913 с.

  1. Зайцев М. Г. Методы оптимизации управления и принятия решений. / М.Г. Зайцев, С.Е. Варюхиню.- Москва: Дело, 2008.- 344 с.
  2. Куликов Г.М.  Теория вероятностей и математическая статистика. / Г.М. Куликов, И.В. Косенкова, А.Д. Нахман.- Тамбов: Изд-во ТГТУ, 2010.- 35 с.

 

 


Информация о работе Теория массового обслуживания