Бесполое и половое размножение и их виды

Автор работы: Пользователь скрыл имя, 16 Ноября 2013 в 10:36, реферат

Описание работы

Способность размножаться, т. е. производить новое поколение особей того же вида, - одна из основных особенностей живых организмов. В процессе размножения происходит передача генетического материала от родительского поколения следующему поколению, что обеспечивает воспроизведение признаков не только данного вида, но конкретных родительских особей. Для вида смысл размножения состоит в замещении тех его представителей, которые гибнут, что обеспечивает непрерывность существования вида; кроме того, при подходящих условиях размножение позволяет увеличить общую численность вида.

Содержание работы

1. Введение.
2. Способы бесполого и полового размножения
3. Моноцитогенные и полицитогенные размножения
4. Биологическая роль размножения
5. Вывод.
6. Список использованной литературы.

Файлы: 1 файл

Bespoloe_i_polovoe_razmnozhenie.doc

— 316.00 Кб (Скачать файл)

Почкование.

Почкованием называют одну из форм бесполого размножения, при  которой новая особь образуется в виде выроста (почки) на теле родительской особи, а затем отделяется от нее, превращаясь в самостоятельный организм, совершенно идентичный родительскому. Почкование встречается в разных группах организмов, особенно у кишечнополостных, например, у гидры, и у одноклеточных грибов, таких как дрожжи. При почковании одноклеточных

 на материнской  клетке формируются вырост. В  дальнейшем ядро делится митозом  и одно из образовавшихся ядер  перемещается в почку. Почка  растет и, достигнув размеров, близких к материнской клетке, отшнуровывается.У многоклеточных организмов почка формируется как многоклеточная структура в особой зоне – зоне почкования. Причем у кишечнополостных формирующийся организм может отделяться от материнского или оставаться связанным с ним всю жизнь (в результате образуется колония).

Необычная форма почкования описана у суккулентного растения бриофиллум - ксерофита, часто выращиваемого  в качестве декоративного комнатного растения: по краям его листьев  развиваются миниатюрные растеньица, снабженные маленькими корешками (см. рис.); эти "почки" в конце концов, отпадают и начинают существовать как самостоятельные растения.

Размножение фрагментами (фрагментация).

Фрагментацией называют разделение особи на две или несколько  частей, каждая из которых растет и образует новую особь. Фрагментация происходит, например, у нитчатых водорослей, таких как спирогира.

Нить спирогиры может  разорваться на две части в  любом месте. Фрагментация наблюдается  также у некоторых низших животных, которые в отличие от более высокоорганизованных форм сохраняют значительную способность к регенерации из относительно слабо дифференцированных клеток. Например, тело немертин (группа примитивных червей, главным образом морских) особенно легко разрывается на много частей, каждая из которых может дать в результате регенерации новую особь. В этом случае регенерация - процесс нормальный и регулируемый; однако, у некоторых животных (например, у морских звезд) восстановление из отдельных частей происходит только после случайной фрагментации.

Животные, способные к  регенерации, служат объектами для  экспериментального изучения этого  процесса; часто при этом используют свободноживущего червя планарию. Такие  эксперименты помогают понять процесс  дифференцировки.

Вегетативное  размножение.

Вегетативное размножение представляет собой одну из форм бесполого размножения, при которой от растения отделяется относительно большая, обычно дифференцированная, часть и развивается в самостоятельное растение. По существу вегетативное размножение сходно с почкованием. Нередко растения образуют структуры, специально предназначенные для этой цели: луковицы, клубнелуковицы, корневища, столоны и клубни. Некоторые из этих структур служат также для запасания питательных веществ, что позволяет растению пережить периоды неблагоприятных условий, таких как холода или засуха. Запасающие органы позволяют растению переживать зиму и давать в следующем году цветки и плоды (двулетние растения) или выживать в течение ряда лет (многолетние растения). К таким органам, называемым зимующими, относятся луковицы, клубнелуковицы, корневища и клубни. Зимующими органами могут быть также стебли, корни или целые побеги (почки), однако во всех случаях содержащиеся в них питательные вещества создаются главным образом в процессе фотосинтеза, происходящего в листьях текущего года. Образовавшиеся питательные вещества переносятся в запасающий орган, а затем обычно превращаются в какой-либо нерастворимый резервный материал, например крахмал. При наступлении неблагоприятных условий надземные части растения отмирают, а подземный зимующий орган переходит в состояние покоя. В начале следующего вегетационного периода запасы питательных веществ мобилизуются с помощью ферментов: почки пробуждаются, и в них начинаются процессы активного роста и развития за счет запасенных питательных веществ. Если прорастает более одной почки, то можно считать, что осуществилось размножение. В ряде случаев образуются специальные органы, служащие для вегетативного размножения. Таковы видоизмененные части стебля - клубни картофеля, луковицы лука, чеснока, луковички в лиственных пазухах мятлика, откидыши молодила и др. Земляника размножается "усами" (см. рис.). В узлах побегов формируются придаточные корни, а из пазушных почек - побеги с листьями. В дальнейшем междоузлия отмирают, а новое растение утрачивает связь с материнским. В практике сельского хозяйства вегетативное размножение растений используется довольно широко.

Клонирование.

Как уже говорилось, получение  идентичных потомков при помощи бесполого  размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека – однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Эти методы возникли в результате попыток доказать, что ядра зрелых клеток, закончивших свое развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, и что специализация клеток обусловлена включением и выключением определенных генов, а не утратой некоторых из них. Первый успех был достигнут профессором Стюардом из Корнельского университета, который показал, что, выращивая отдельные клетки корня моркови (ее съедобной части) в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых растений моркови.

Вскоре после этого  Гёрдон, работавший в Оксфордском  университете, впервые сумел добиться клонирования позвоночного животного. Позвоночные в естественных условиях клонов не образуют; однако, пересаживая  ядро, взятое из клетки кишечника лягушки, в яйцеклетку, собственное ядро которой предварительно было разрушено путем облучения ультрафиолетом, Гёрдону удалось вырастить головастика, а затем и лягушку, идентичную той особи, от которой было взято ядро.

С семидесятых годов  ученые предпринимали попытки клонирования млекопитающих. Крохотная овечка Долли – символ очередного этапа успешного развития биотехнологии.

Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для  развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных. Фактически появились реальные технические возможности для клонирования человека. Вот всего лишь несколько проблем, которые решаются таким образом:

1) Устранение генетических  дефектов еще во внутриутробном  периоде путем замены мутантного  гена полноценным;

2) Лечение некоторых  форм бесплодия, так как при использовании описанной методики выносить ребенка может не только биологическая, но и суррогатная мать;

3) Получение эмбрионов  для запасных частей, используемых  во время операций по пересадке  органов (мгновенно устраняется  проблема тканевой несовместимости – ведь эмбрион будет выращен из клетки самого больного).

 Однако применение  методов клонирования к человеку  сопряжено с серьезными проблемами  нравственного порядка.  На первый  взгляд может показаться, что  таким образом можно было бы  воспроизводить талантливых ученых или деятелей искусства. Однако надо помнить, что степень влияния, оказываемого на развитие средой, еще не вполне ясна, а между тем любая клонируемая клетка должна снова пройти через все стадии развития, т.е. в случае человека-стадии зародыша, плода, младенца и т.д. Поэтому достижения генной инженерии последних лет вызывают чрезвычайно сильную реакцию общественности и в особенности тех кругов, которые формируют общественное мнение (теологи, философы, журналисты). Генетики и врачи нередко подвергаются яростным нападкам, хотя они первыми забили тревогу, когда обнаружилась опасность экспериментов (в 1973 году у П. Берга из Стэнфорда созрела идея переноса ракового гена в кишечную палочку, что действительно могло создать непредсказуемую опасность). Ряд видных ученых продолжает беспокоиться по поводу возможных осложнений, связанных с межвидовым переносом ДНК. Также совершенно не разработано юридическое обеспечение большинства вопросов. 

Половое размножение.

При половом размножении  потомство получается в результате слияния генетического материала гаплоидных ядер. Обычно эти ядра содержатся в специализированных половых клетках - гаметах; при оплодотворении гаметы сливаются, образуя диплоидную зиготу, из которой в процессе развития получается зрелый организм. Гаметы гаплоидны - они содержат один набор хромосом, полученный в результате мейоза; они служат связующим звеном между данным поколением и следующим (при половом размножении цветковых растений сливаются не клетки, а ядра, но обычно эти ядра тоже называют гаметами.)       Мейоз - важный этап жизненных циклов, включающих половое размножение, так как он ведет к уменьшению количества генетического материала вдвое. Благодаря этому в ряду поколений, размножающихся половым путем, это количество остается постоянным, хотя при оплодотворении оно каждый раз удваивается. Во время мейоза в результате случайного расхождения хромосом (независимое распределение) и обмена генетическим материалом между гомологичными хромосомами (кроссинговер) возникают новые комбинации генов, попавших в одну гамету, и такая перетасовка повышает генетическое разнообразие. Слияние содержащихся в гаметах гаплоидных ядер называют оплодотворением или сингамией; оно приводит к образованию диплоидной зиготы, т. е. клетки, содержащей по одному хромосомному набору от каждого из родителей. Это объединение в зиготе двух наборов хромосом (генетическая рекомбинация) представляет собой генетическую основу внутривидовой изменчивости. Зигота растет и развивается в зрелый организм следующего поколения. Таким образом, при половом размножении в жизненном цикле происходит чередование диплоидной и гаплоидной фаз, причем у разных организмов эти фазы принимают различные формы. В зависимости от особенностей строения гамет, можно выделить следующие формы полового размножения: изогамию, гетерогамию и овогамию.

Изогамия (1) — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.

Гетерогамия (2) — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.

Овогамия (3) — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками, мужские гаметы, если имеют жгутики, — сперматозоидами, если не имеют, — спермиями.

Овогамия характерна для большинства видов животных и растений. Изогамия и гетерогамия  встречаются у некоторых примитивных  организмов (водоросли). Кроме вышеперечисленных, у некоторых водорослей и грибов имеются формы размножения, при которых половые клетки не образуются: хологамия и конъюгация. При хологамии происходит слияние друг с другом одноклеточных гаплоидных организмов, которые в данном случае выступают в роли гамет. Образовавшаяся диплоидная зигота затем делится мейозом с образованием четырех гаплоидных организмов. При конъюгации (4) происходит слияние содержимого отдельных гаплоидных клеток нитевидных талломов. По специально образующимся каналам содержимое одной клетки перетекает в другую, образуется диплоидная зигота, которая обычно после периода покоя также делится мейозом.

Гаметы обычно бывают двух типов - мужские и женские, но некоторые примитивные организмы производят гаметы только одного типа. У организмов, образующих гаметы двух типов, их могут производить соответственно мужские и женские родительские особи, а может быть и так, что у одной и той же особи имеются и мужские, и женские половые органы. Виды, у которых существуют отдельные мужские и женские особи, называются раздельнополыми; таковы большинство животных и человек.

Партеногенез

Партеногенез - одна из модификаций полового размножения, при которой женская гамета развивается в новую особь без оплодотворения мужской гаметой. Партеногенетическое размножение встречается как в царстве животных, так и в царстве растений, и преимущество его состоит в том, что в некоторых случаях оно повышает скорость размножения. Существует два вида партеногенеза - гаплоидный и диплоидный, в зависимости от числа хромосом в женской гамете. У многих насекомых, в том числе у муравьев, пчел и ос, в результате гаплоидного партеногенеза в пределах данного сообщества возникают различные касты организмов. У этих видов происходит мейоз и образуются гаплоидные гаметы. Некоторые яйцеклетки оплодотворяются, и из них развиваются диплоидные самки, тогда как из неоплодотворенных яйцеклеток развиваются фертильные гаплоидные самцы. Например, у медоносной пчелы матка откладывает оплодотворенные яйца (2n = 32), которые, развиваясь, дают самок (маток или рабочих особей), и неоплодотворенные яйца (n = 16), которые дают самцов (трутней), производящих спермии путем митоза, а не мейоза. Такой механизм размножения у общественных насекомых имеет адаптивное значение, так как позволяет регулировать численность потомков каждого типа.Партеногенез широко распространен у растений, где он принимает различные формы. Одна из них - апомиксис - представляет собой партеногенез, имитирующий половое размножение. Апомиксис наблюдается у некоторых цветковых растений, у которых диплоидная клетка семязачатка-либо клетка нуцеллуса, либо мегаспора - развивается в функциональный зародыш без участия мужской гаметы. Из остального семязачатка образуется семя, а из завязи развивается плод. В других случаях требуется присутствие пыльцевого зерна, которое стимулирует партеногенез, хотя и не прорастает; пыльцевое зерно индуцирует гормональные изменения, необходимые для развития зародыша, и на практике такие случаи трудно отличить от настоящего полового размножения. Половое размножение дает неиссякаемый источник изменчивости, обусловливающий широкие возможности приспособления организмов к среде обитания. В этом состоит преимущество полового размножения перед вегетативным и спорообразованием, при которых организм имеет только одного родителя и почти целиком повторяет его особенности.При половом размножении благодаря перекомбинации наследственных свойств обоих родителей появляется разнообразие признаков у потомков. Могут отмечаться и неудачные комбинации наследственных признаков; такие организмы гибнут в результате естественного отбора. С другой стороны, наблюдаются и такие комбинации, которые делают организм хорошо приспособленным к условиям среды. Кроме того, с каждым поколением выживают организмы, имеющие наиболее благоприятные комбинации наследственных свойств, что ведет к прогрессивной эволюции. Благодаря этой важной биологической роли половое размножение нашло широкое распространение и занимает доминирующее положение в природе, несмотря на определенные "технические" сложности. Для бесполого размножения достаточно одной особи. Для полового размножения у большинства видов требуется встреча двух особей разного пола. Даже у истинных гермафродитов обычно существует перекрестное оплодотворение. Встреча двух особей подчас связана с затруднениями, поэтому в процессе естественного отбора появились сложные приспособительные особенности в строении организмов, развились эндокринные и рефлекторные механизмы, направленные в конечном итоге на обеспечение встречи гамет.

Половое размножение у человека

Мужская половая система

Мужская половая система  состоит из парных семенников (яичек), семявыносящих протоков, ряда придаточных желез и полового члена (пениса). Семенник - сложная трубчатая железа яйцевидной формы; она заключена в капсулу - белочную оболочку - и состоит примерно из тысячи сильно извитых семенных канальцев, погруженных в соединительную ткань, в которой содержатся интерстициальные (лейдиговы) клетки. В семенных канальцах образуются гаметы - спермии (сперматозоиды), а интерстициальные клетки вырабатывают мужской половой гормон тестостерон. Семенники расположены вне брюшной полости, в мошонке, а поэтому спермии развиваются при температуре, которая на 2-3°С ниже температуры внутренних областей тела. Более низкая температура мошонки частично определяется ее положением, а частично-сосудистым сплетением, образуемым артерией и веной семенника и действующим как противоточный теплообменник. Сокращения особых мышц перемещают семенники ближе или дальше от тела в зависимости от температуры воздуха, чтобы поддерживать температуру в мошонке на уровне, оптимальном для образования спермы. Если мужчина достиг половой зрелости, а семенники не опустились в мошонку (состояние, называемое крипторхизмом), то он навсегда остается стерильным, а у мужчин, носящих слишком тесные трусы или принимающих очень горячие ванны, образование спермиев может так сильно понизиться, что это приведет к бесплодию. Лишь у немногих млекопитающих, в том числе у китов и слонов, семенники всю жизнь находятся в брюшной полости.

Семенные канальцы достигают 50 см в длину и 200 мкм в диаметре и расположены в участках, называемых дольками семенника. Оба конца канальцев соединяются с центральной областью семенника - сетью семенника - короткими прямыми семенными канальцами. Здесь сперма собирается в 10-20 выносящих канальцах; по ним она переносится в головку придатка (эпидидимиса), где концентрируется в результате обратного всасывания жидкости, выделяемой семенными канальцами. В головке придатка спермии созревают, после чего они проходят по извитому 5-метровому выносящему канальцу к основанию придатка; здесь они остаются в течение короткого времени, прежде чем попадают в семявыносящий проток. Семявыносящий проток-это прямая трубка длиной около 40 см, которая вместе с артерией и веной семенника образует семенной канатик и переносит сперму в уретру (мочеиспускательный канал), проходящую внутри полового члена. Взаимоотношения между этими структурами, мужскими придаточными железами и половым членом показаны на рис. 5 и 6.

Развитие сперматозоидов (сперматогенез)

Сперматозоиды (спермии) образуются в результате ряда последовательных клеточных делений, называемых в совокупности сперматогенезом, за которыми следует сложный процесс дифференцировки, называемый спермиогенезом (рис. 7). Процесс образования спермия занимает примерно 70 дней; на 1 г веса яичка образуется 107 спермиев в сутки. Эпителий семенного канальца состоит из наружного слоя клеток зачаткового эпителия и примерно шести слоев клеток, образовавшихся в результате многократных делений клеток этого слоя; эти слои соответствуют последовательным стадиям развития сперматозоидов. Сначала деление клеток зачаткового эпителия дает начало многочисленным сперматогониям, которые увеличиваются в размерах и становятся сперматоцитами первого порядка. Эти сперматоциты в результате первого деления мейоза образуют гаплоидные сперматоциты второго порядка, после чего претерпевают второе деление мейоза и превращаются в сперматиды. Между «тяжами» из развивающихся клеток расположены крупные клетки Сертоли, или трофические клетки, расположенные во всем пространстве от наружного слоя канальца до его просвета.

Информация о работе Бесполое и половое размножение и их виды