Функции биологических мембран. Ионы каналов мембран

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 07:35, реферат

Описание работы

Биологические мембраны, наряду с цитоскелетом, формируют структуру живой клетки. Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней. Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т.д. представляют собой замкнутые мембранные везикулы (пузырьки). Каждый тип мембран содержит специфический набор белков - рецепторов и ферментов; но основа любой мембраны - бимолекулярный слой липидов (липидный бислой), который во всякой мембране выполняет две главные функции: барьера для ионов и молекул и структурной основы (матрицы) для функционирования рецепторов и ферментов.

Содержание работы

1.Введение
2.Функции биологических мембран
3.Строение мембран
4.Липиды мембран
Химический состав мембран.
5.Белки мембран
6.Липидный бислой
7.Ионные каналы мембраны
7.1.Строение ИК
7.2.Свойства ИК
7.3.Функции ИК
7.4.Функциональные состояния ИК
7.5.Структурно-функциональные нарушения ИК
8.Список используемой литературы:

Файлы: 1 файл

srs_fzl.docx

— 307.52 Кб (Скачать файл)

длинный "хвост", образованный углеводородными цепями жирных кислот, входящих в

состав фосфолипида (см. Рис.6).

Амфифильные молекулы

Липидные бислои образуются амфифильными молекулами фосфолипидов и

сфингомиелина в водной фазе. Амфифильными эти молекулы называют потому, что

они состоят из двух частей, различных по своей растворимости в воде: полярной

головки, обладающей высоким сродством к воде, т. е. гидрофильной, и хвоста

образуемого неполярными углеводородными цепями жирных кислот; эта часть

молекулы обладает низким сродством к воде, т. е. гидрофобна.

В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и

холестерин. Например, в мембранах эритроцитов человека их содержание, составляет,

соответственно 36, 30 и 22 % по весу; еще 12% приходится на гликолипиды

С химической точки зрения фосфолипид состоит из четырёх частей: глицерина,

двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой

для каждого фосфолипида группы, которую мы будем называть характеристической

группой. Как и другие фосфолипиды, фосфатидилэтаноламин, в химическом отношении представляет собой сложные эфиры трехатомного спирта глицерина с двумя жирными кислотами; к третьей гидроксильной группе присоединен ортофосфат, а к нему – небольшая органическая молекула, характерная для каждого вида фосфолипидов. В

рассматриваемом случае это этаноламин, но могут быть также холин, инозитол, серин

и некоторые другие молекулы.

7.Ионные каналы мембраны

Ионные каналы (ИК) - это сложные трансмембранные белковые структуры, пронизывающие клеточную мембрану поперёк в виде нескольких петель и образующие в мембране сквозное отверстие (пору). Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются дополнительные молекулярные системы: открытия, закрытия, избирательности, инактивации, рецепции и регуляции. ИК могут иметь не один, а несколько участков (сайтов) для связывания с управляющими веществами (лигандами).

Кроме ИК в мембране существуют и другие транспортные системы для переноса через неё различных веществ. Так, перенос веществ может осуществляться специальными транспортными белками, или транслоказами. Транслоказы - это несколько иное понятие, чем ИК. В отличие от мембранных каналов, транслоказы в процессе переноса вещества через мембрану взаимодействуют с ним как с лигандом и  при этом  претерпевают конформационные изменения. По кинетике перенос веществ с помощью транслоказ в виде облегчённой диффузии напоминает ферментативную реакцию.

Итак, ионный канал - это интегральный белок, образующий в мембране пору для обмена клетки с окружающей средой ионами K+, Na+, H+, Ca2+, Cl-, а также водой, и способный изменять свою проницаемость.

7.1.Строение ИК

ИК состоят из белков сложной структуры (белков-каналоформеров). Схематические изображения ИК приведены ниже, например: натриевый НАХ-рецепторный ионный канал.

На рисунке справа показан натриевый канал: вид сверху, с наружной стороны мембраны .Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. В другом случае канал может представлять собой единый полипептид, который в виде петель прошивает мембрану несколько раз. На начало XXI века известно более 400 белков-каналоформеров, для биосинтеза которых используется 1-2% генома человека.

Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Концевые домены белка-каналоформера (N- и С-терминальные домены) могут торчать из мембраны как наружу, так и внутрь клетки.

Практически все ИК имеют в составе своих субъединиц регуляторные домены, способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. При изменении потенциала такой сенсор меняет состояние канала с открытого на закрытое или наоборот. Таким образом, ИК могут управляться определёнными воздействиями извне, это важное их свойство.

ИК в своём составе могут иметь также вспомогательные субъединицы, выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.

7.2.Свойства ИК

Селективность - это избирательная повышенная проницаемость ИК для определённых ионов. Для других ионов проницаемость понижена. Такая избирательность определяется селективным фильтром - самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Например, катион-селективные каналы обычно имеют в области своего селективного фильтра отрицательно заряженные остатки аминокислот в составе белковой молекулы, которые притягивают положительные катионы и отталкивают отрицательные анионы, не пропуская их через пору.

Управляемая проницаемость - это способность ИК открываться или закрываться при определённых управляющих воздействиях на канал. Понятно, что закрытый канал имеет пониженную проницаемость, а открытый - повышенную. По этому свойству ИК можно классифицировать в зависимости от способов их открытия: например, потенциал-активируемые, лиганд-активируемые и т.д.

Инактивация - это способность ИК через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

Быстрая инактивация - это особый процесс со своим особым механизмом, отличающийся от медленного закрытия канала (медленной инактивации). Закрытие (медленная инактивация) канала происходит за счёт процессов, противоположных процессам, обеспечившим его открытие, т.е. за счёт изменения конформации канального белка. А вот, например, у потенциал-активируемых каналов быстрая инактивация происходит с помощью специальной молекулярной "пробки-затычки", напоминающей пробку на цепочке, которую обычно используют в ваннах.  Эта пробка представляет собой аминокислотную (полипептидную) петлю с утолщением на конце в виде трёх аминокислот, которым и затыкается внутреннее устье канала со стороны цитоплазмы. Именно поэтому потенциал-зависимые ИК для натрия, обеспечивающие развитие потенциала действия и движение нервного импульса, могут пропускать в клетку ионы натрия только в течение нескольких миллисекунд, а затем они автоматически закрываются своими молекулярными пробками, несмотря на то, что открывающая их деполяризация продолжает действовать. Другим механизмом инактивации ИК может служить модификация дополнительными субъединицами внутриклеточного устья канала.

Блокировка - это способность ИК под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. В таком состоянии канал просто перестаёт давать ответы на управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками.

Антагонисты - это вещества, препятствующие активирующему действию других веществ на ИК. Такие вещества способны хорошо связываться с рецепторным участком ИК, но не способны изменить состояние канала, вызвать его ответную реакцию. Получается блокада рецептора и вместе с ним - блокада ИК. Следует помнить, что антагонисты не обязательно вызывают полную блокаду рецептора и его ИК, они могут действовать более слабо и лишь ингибировать (угнетать) работу канала, но не прекращать её полностью

Агонисты-антагонисты - это вещества, которые обладают слабым стимулирующим влиянием на рецептор, но при этом блокируют действие естественных эндогенных управляющих веществ.

Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты.

Литики - это те же блокаторы в отношении ИК, но этот термин более старый. Он используется как синоним для блокатора: холинолитик, адренолитик и т.д. В то же время в фармакологии термин "литик" применяется в более широком смысле - как вещество, препятствующее не только действию лиганда, а вообще препятствующее передаче возбуждения.

Пластичность - это способность ИК изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность - это фосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами. К канальным белкам присоединяются фосфорные остатки от АТФ или ГТФ - и канал меняет свои свойства. Накпример, фиксируется в постоянно закрытом состоянии, или, наоборот, в открытом.

7.3.Функции ИК

Главная функция ИК - обеспечивать управляемое перемещение ионов через мембрану.

В зависимости от проходящих через них ионов ИК подразделяют на натриевые, калиевые, кальциевые, хлорные, протонные (водородные).

Функции ИК:

1. Регуляция водного  обмена клетки: объём и тургор.

2. Регуляция pH: закисление и защелачивание.

3. Регуляция ионного  обмена (обмен солей): изменение внутриклеточного  ионного состава и концентрации.

4. Создание и изменение  мембранных потенциалов: потенциал  покоя; в возбудимых клетках - локальные  потенциалы, потенциал действия.

5. Проведение возбуждения  в возбудимых клетках: обеспечение  движения нервных импульсов.

6. Трансдукция в сенсорных  рецепторах: преобразование раздражения (стимула) в возбуждение.

7. Управление активностью  клетки: за счёт обеспечения потоков  вторичного мессенджера - Са2+.

 

7.4.Функциональные состояния ИК

 

1. Открытое. Канал открыт и через него происходит перемещение ионов.

2. Закрытое. Канал закрыт и ионы не проходят через него.

3. Активированное. Канал может выполнять свои функции, т.е. открываться и закрываться под действием его регуляторов (управляющих веществ или электрических потенциалов).

4. Инактивированное. Канал не может выполнять свои функции, т.е. открываться и закрываться, он "фиксируется" в каком-то одном состоянии.

5. Блокированное. Канал перекрыт, инактивирован веществом-антагонистом (блокатором), занявшем место управляющего вещества.

6. Модулированное (фосфорилированное). Канал изменяет свои обычные свойства под действием фосфорилирования - присоединения к какому-то его участку фосфатного остатка.

 

7.5.Структурно-функциональные нарушения ИК

Каналопатии - это группа врождённых заболеваний, вызванных нарушениями в работе ИК. Каждая каналопатия обусловлена патологией соответствующих ИК. В основе патологии лежит либо мутация генов, кодирующих строение белков-каналоформеров, либо производство аутоантител, агрессивных по отношению к собственным ИК.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.Список используемой литературы:

1. http://foroff.phys.msu.ru/phys/med/cell/Cell_01bi.pdf

2.https://www.google.kz/search?q=функции+биологических+мембран+ионы+каналов+мембран

3.(Источник: Horn R. (2011). Peering into the spark of life. Nature 475, 305–306).

4. http://kineziolog.bodhy.ru/content/ionnye-kanaly-membrany

5. (Котык А. и Яначек К. Мембранный транспорт, Москва, Мир, 1980 г., стр. 44).

 


Информация о работе Функции биологических мембран. Ионы каналов мембран