Контрольная работа по "Цитологии и генетике"

Автор работы: Пользователь скрыл имя, 07 Июня 2013 в 14:54, контрольная работа

Описание работы

Жизнь — это качественно особая форма существования материи связанная с самовоспроизведением. Все живое происходит только из живого. Сущность жизни заключаетеся в самовоспроизведении, которое обеспечивается передачей генетической информации от поколения к поколению. Жизнь — открытая система, состоящая из подсистем более низкого порядка.
В настоящее время считают, что субстрат жизни представлен нуклеопротеидами, они входят в состав ядра и цитоплазмы клеток животных и растений и цитоплазмы у прокариот. Нуклеопротеиды становятся субстратом жизни лишь тогда, когда они находятся и функционируют в клетках. Вне клеток — это химические соединения.

Файлы: 1 файл

Биология экзамен.docx

— 536.20 Кб (Скачать файл)

Репликация начинается в  сайте инициации репликации с  расплетания двойной спирали  ДНК, при этом формируетсярепликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдатьрепликационный глазок — участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК[1].

В репликационной вилке ДНК  копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500—5000 — у эукариот[3].

Праймер (англ. primer) — это короткий фрагмент нуклеиновой кислоты (олигонуклеотид), комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы, а также при репликации ДНК. Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3'-конца (гидроксильной группы) праймера. ДНК-полимераза последовательно добавляет к 3'-концу праймера нуклеотиды, комплементарные матричной цепи[1][2].

Каждая дочерняя ДНК содержит одну цепочку из материнской ДНК  и одну новосинтезированную –  это принцип полуконсервативности.

Согласно принципу антипараллельности цепочки ДНК лежат друг к другу противоположными концами. ДНК может удлиняться только 3'-концом, поэтому в каждой репликационной вилке только одна из двух цепочек синтезируется непрерывно. Вторая цепочка (отстающая) растет в 5'-направлении с помощью коротких (100-200 нуклеотидов) фрагментов Оказаки, каждый из которых растет в 3'-направлении, а затем с помощью фермента ДНК-лигазы присоединяется к предыдущей цепочке.

19) Рибонуклеи́новая кисло́та (РНК) — одна из трёх основных макромолекул (две другие —ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной  цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Однако функции РНК  в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых  ферментов (например,теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Между ДНК и РНК есть три основных отличия:

  1. ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой,гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
  2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.
  3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Матричная (информационная) РНК — РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка[29]. Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК) или быть производными интронов[30]. Классические, хорошо изученные типы некодирующих РНК — это транспортные РНК (тРНК) и рРНК, которые участвуют в процессетрансляции[31]. Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание и лигированиемолекул РНК[32]. По аналогии с белками, способными катализировать химические реакции — энзимами (ферментами), каталитические молекулы РНК называютсярибозимами.

Локализация ДНК и РНК в клетке различна. ДНК локализована в ядре клетки, РНК – в ядре и цитоплазме. Только тРНК находится преимущественно  к цитоплазме в растворенном виде. Как правило, нуклеиновые кислоты (ДНК и РНК) в живой клетке находятся  в форме нуклеопротеинов. Основные структуры, содержащие нуклеопротеины, - это хроматин, где локализована ДНК, и рибосомы, где локализована РНК.

20) ТРАНСКРИПЦИЯ, биосинтез молекул рибонуклеиновых кислот (РНК) на соответствующих участках молекул дезоксирибонуклеиновой кислоты(ДНК); первый этап в действии гена по реализации генетической информации.  
 
Для синтеза РНК используется одна, т. н. смысловая цепь из двуцепочечной молекулы ДНК. Матричный синтез РНК (т. е. синтез с использованием матрицы, шаблона, в данном случае – ДНК) осуществляет фермент РНК-полимераза. Этот фермент «узнаёт» на ДНК стартовый участок (участок начала транскрипции), присоединяется к нему, расплетает двойную цепь ДНК и начинает синтез одноцепочечной РНК. К смысловой цепи ДНК подходят нуклеотиды, присоединяются к ней по принципу соответствия (комплементарности), а затем передвигающийся по ДНК фермент сшивает их в полинуклеотидную цепь РНК. Скорость роста цепи РНК у кишечной палочки составляет 40–45 нуклеотидов в секунду. Окончание транскрипции кодируется специальным участком ДНК. Подобно другим матричным процессам – репликации и трансляции, транскрипция включает три стадии – начало синтеза (инициация), наращивание цепи (элонгация) и окончание синтеза (терминация). После отделения от матрицы РНК поступает из клеточного ядра в цитоплазму. Информационная РНК (и-РНК), прежде чем присоединиться к рибосоме и в свою очередь стать матрицей для биосинтеза белка (трансляции), подвергается ряду преобразований. Таким образом происходит переписывание (лат. «транскрипцио» – переписывание) генетической информации, заключённой в последовательности нуклеотидов ДНК, в последовательность нуклеотидов и-РНК. Во всех организмах при транскрипции ДНК образуются РНК всех классов – информационные, рибосомальные и транспортные. 

Каждый триплет управляет включением в белок определенной аминокислоты. Наивысшее число возможных триплетов (64) может достигаться лишь в том  случае, когда последовательности нуклеотидов  или оснований считываются только в одном направлении (мононуклеотиды отличаются только основаниями, так как сахар в нуклеиновой кислоте каждого типа и фосфорная кислота во всех нуклеиновых кислотах одинаковы). Поэтому последовательность нуклеотидов определена только последовательностью оснований. Поскольку названия оснований начинаются с разных букв, то используют только начальные буквы. В РНК содержатся А, Ц, Г, У, а в ДНК — А, Ц, Г, Т. Например, триплет ГАУ кодирует аспара-гиновую кислоту; триплет ГЦУ — аминокислоту аланин; триплет ЦЦУ — пролин. Значит, последовательность ГАУ— ГЦУ—ЦЦУ соответствует «приказу» клетке строить белок по схеме: аспараги-новая кислота — аланин—пролин. И последовательность оснований включает информацию о последовательности аминокислот. Она — источник информации и в то же время «негатив», или искомая «матрица». Порядок чередования аминокислот определен последовательностью триплетов. Эта элементарная единица наследственного материала была названакодоном.

Отличия: 1) при репликации ДНК деспирализуется на всем протяжении, а при транскрипции только определенный ее участок, который называетсятранскриптоном. В транскриптоне различают ген-оператор, ген-промотор, структурные гены и терминирующие гены; 2) при транскрипции используются НТФ (в отличие от дНТФ в них рибоза вместо дезоксирибозы; урацил вместо тимина); 3) при транскрипции списывание информации идет только с определенного транскриптона; 4) полимеразная реакция при транскрипции катализируется РНК-полимеразой

21) Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белковпри помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Белки практически всех живых  организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация  генетической информации в живых клетках (то есть синтез белка, кодируемогогеном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства [править]


  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[11]
  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов дочеловека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

22) Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидовДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов  позволяет клеткам контролировать собственную структуру и функцию  и является основойдифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

В процессе синтеза  катаболических ферментов (расщепляющих суб-страты) у прокариот происходит индуцируемый синтез ферментов. Это  дает клетке возможность приспосабливаться  к условиям окружающей среды и  экономить энергию, прекращая синтез соответствующего фермента, если потребность  в нем исчезает.

Переключение генов лучше  всего изучено у прокариот (бактерий). Рассмотрим механизмы регуляции  активности генов на примере лактозного оперона кишечной палочки (Escherichia coli) – классического объекта генетики микроорганизмов. Единицей регуляции экспрессии генов у прокариот является оперон.

Оперон – это участок бактериальной хромосомы, включающий следующие участки ДНК:  Р – промотор, О – оператор, Z, Y, А – структурные гены, Т – терминатор. (В состав других оперонов может входить до 10 структурных генов и более.)

Промотор – это регуляторный участок ДНК, который служит для присоединения РНК-полимеразык молекуле ДНК. В лактозном опероне присоединение РНК-полимеразы происходит с помощью комплекса CAP-цАМФ (CAP – это специфический белок; в свободной форме является неактивным активатором, цАМФ – циклоаденозинмонофосфат – циклическая форма аденозинмонофосфорной кислоты).

Оператор – это регуляторный участок ДНК, который способен присоединять белок-репрессор, который кодируется соответствующим геном lac. Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать мРНК.

Информация о работе Контрольная работа по "Цитологии и генетике"