Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 20:23, реферат

Описание работы

Мембраны играют ключевую роль, как в структурной организации, так и в функционировании всех клеток - прокариотических и эукариотических, растительных и животных. Мембраны формируют внутриклеточные компартменты, с их помощью происходит разделение содержимого компартментов и окружающей их среды.

Содержание работы

ВВЕДЕНИЕ 3
Транспорт веществ через биологические мембраны 4
Пассивный и активный транспорт веществ 4
Первичный транспорт.......................................................................................4
Эндоцитоз и экзоцитоз 5
Вторичный транспорт. Диффузия 6
Строение и функции ионных каналов и переносчиков 9
ЗАКЛЮЧЕНИЕ 11
ЛИТЕРАТУРА 12

Файлы: 1 файл

СРС Биофиз.docx

— 35.81 Кб (Скачать файл)

Карагандинский государственный медицинский университет

 

Кафедра медицинской биофизики

 и информатики

 

 

 

 

 

 

 

CРC

Тема: «Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков».

 

 

 

 

 

 

 

 

                                                               Выполнила: ст.151 гр. ОМФ  

                                                                                     Мулдашева Ж.

 

Проверила: Баймагамбетова Г. Г.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Караганда 2012

ПЛАН

ВВЕДЕНИЕ 3

Транспорт веществ через биологические мембраны 4

Пассивный и активный транспорт веществ 4

Первичный транспорт.......................................................................................4

Эндоцитоз и экзоцитоз 5

Вторичный транспорт. Диффузия 6

Строение и функции ионных каналов и переносчиков 9

ЗАКЛЮЧЕНИЕ 11

ЛИТЕРАТУРА 12

 

 

 

ВВЕДЕНИЕ

Мембраны играют ключевую роль, как в структурной организации, так и в функционировании всех клеток - прокариотических и эукариотических, растительных и животных. Мембраны формируют внутриклеточные компартменты, с их помощью происходит разделение содержимого компартментов и окружающей их среды.

Мембраны не только разделяют клетку на отдельные компартменты, но и  участвуют в регуляции всех связей и взаимодействий, которые осуществляются между наружной и внутренней сторонами  этих компартментов.

Проницаемость - важнейшее свойство биологических мембран, заключающееся в их способности пропускать в клетку и из неё различные метаболиты (аминокислоты, сахара, ионы и т.п.). Проницаемость биологических мембран имеет большое значение для осморегуляции и поддержания постоянства состава клетки, её физико-химический гомеостаз; играет важную роль в генерации и проведении нервного импульса, в энергообеспечении клетки, сенсорных механизмах и др. процессах жизнедеятельности.

Проницаемость биологических мембран обусловлена особенностями строения биологической мембран, являющихся осмотическим барьером между клеткой и средой, и служит характерным примером единства и взаимосвязи между структурой и функцией на молекулярном уровне.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Транспорт веществ через  биологические мембраны

 

Основу любой молекулярной мембраны составляют  молекулы липидов, образующих бислой. И поэтому, основные свойства биологических мембран  определяются свойствами липидного бислоя, но большинство специфических функций обеспечивается мембранными белками. Белки выступают в качестве рецепторов и ферментов. С их помощью осуществляется транспорт через мембрану многих веществ.

Транспорт веществ – является необходимым условием жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны, приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны.

 

Транспорт через мембрану может быть пассивным, облегченным или активным.

Транспорт через клеточную мембрану обеспечивает:

1) поступление в клетку различных  веществ, необходимых для синтеза  клеточных структур и выработки  энергии; 

2) регуляцию физико-химических  констант внутренней среды клетки;

3) создание электрических зарядов клеток, возникновение и распространение возбуждения;

4) выделение клетками продуктов ее обмена и биологически активных веществ: нейрогормонов, нейромедиаторов.

Транспорт веществ через клеточную  мембрану делят на пассивный (без затрат энергии) и активный (с затратой энергии).

Движущей силой пассивного перемещения  веществ являются концентрационный (химический) и электрический градиенты. Согласно концентрационному градиенту, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Согласно электрическому градиенту, положительно заряженные частицы стремятся перейти в область с отрицательным электрическим зарядом, отрицательно заряженные частицы - в противоположном направлении. Направления электрического и концентрационного градиентов могут совпадать и не совпадать.

Если энергия расходуется непосредственно  на перенос частиц, транспорт называется первично активным. Если же на транспорт  частиц расходуется ранее запасенная энергия, например концентрационный градиент, то такой транспорт называется вторично активным. В обоих случаях транспорт веществ является активным (с затратой энергии).

2. Первичный транспорт

Первичный транспорт - это такой  транспорт, когда энергия расходуется  непосредственно на перенос частиц. Он включает, во-первых, перенос отдельных  ионов вопреки концентрационному  и электрическому градиентам с помощью специальных ионных насосов, во-вторых, эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт).

Транспорт веществ с  помощью насосов. Насосы представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии являются АТФ. Достаточно хорошо изучены Na/K-, Са- и Н- насосы. Рассмотрим основные характеристики насосов.

1. Специфичность насосов заключается в том, что они обычно переносят какой-то определенный ион или 2 иона. Например, Na/K-насос (объединенный насос для Na+ и К+) не способен переносить ион лития, хотя по своим свойствам он очень близок к натрию.

2. Характеристика отдельных насосов. Натрий-калиевый насос (Na/K-АТФаза) - это интегральный белок клеточной мембраны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщепление АТФ и освобождение энергии, которую он же сам использует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого - градиент концентрации Na+ и К+ внутри и вне клетки, что обеспечивает формирование мембранного потенциала и вторичный транспорт веществ. Главными активаторами насоса являются гормоны (альдостерон, тироксин). Работа натриевого насоса после удаления К+ из среды сильно нарушается. Кальциевый насос локализуется в эндоплазматическом ретикулуме, он обеспечивает транспорт ионов Са2+. Насос строго контролирует содержание ионов Са в клетке, поскольку изменение уровня Са нарушает ее функцию. Насос переносит ионы Са либо во внеклеточную среду, либо в цистерны ретикулума и митохондрии (внутриклеточное депо ионов Са).

3. Постоянная работа насосов необходима для поддержания концентрационных градиентов ионов, связанного с ними электрического заряда клетки и движения воды и незаряженных частиц в клетку и из клетки вторично активно согласно законам диффузии и осмоса. Эти процессы обеспечивают жизнедеятельность нейрона, как и любой другой клетки. В результате разной проницаемости клеточной мембраны для различных ионов и постоянной работы ионных помп концентрация ионов внутри и снаружи клетки неодинакова. Ионы являются заряженными частицами, поэтому существует электрический заряд нейрона. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преобладают отрицательные ионы, а снаружи - положительные.

Ионы К+ находятся преимущественно  в клетке, а ионы Na+ и Сl - во внеклеточной жидкости. Внутри клетки расположены  также крупномолекулярные (в основном белкового происхождения) анионы. Na/K-насос транспортирует не только ионы Na+ и К+, но и другие молекулы, например глюкозу, аминокислоты. Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только ионов Na+ и К+. Это обеспечивает сохранение клеточного объема (осморегуляция), поддержание электрической активности в нервных клетках, транспорт других веществ.

Таким образом, первичный транспорт  ионов играет исключительно важную роль в жизнедеятельности клеток.

Эндоцитоз и экзоцитоз (микровезикулярный транспорт).

Это еще два первичных (первично активных), близких по механизму транспорта, посредством которых различные материалы переносятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз). С их помощью транспортируются крупномолекулярные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут транспортироваться по каналам или с помощью насосов.

1. При эндоцитозе клеточная мембрана образует впячивания, или выросты, внутрь клетки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно сливаются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу - внутриклеточному перевариванию. Продукты гидролиза используются клеткой. Например, выделившийся медиатор нервным окончанием захватывается снова посредством эндоцитоза.

2. Экзоцитоз - процесс, обратный эндоцитозу, это механизм секреции нейрогормонов и нейромедиаторов. Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, образовавшиеся в рибосомах эндоплазматического ретикулума. Пузырьки транспортируются посредством сократительного аппарата клетки к клеточной мембране, сливаются с ней, а содержимое клетки выделяется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного аппарата клетки. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругооборот, рециркуляция): в течение каждого часа в процессе эндоцитоза в разных клетках используется от 3 до 100% клеточной оболочки, но с такой же скоростью происходит ее возобновление в результате экзоцитоза.

3. Трансцитоз сочетает элементы эндо- и экзоцитоза. Это перенос частиц через клетку: например, перенос молекул белка в виде везикул через эндотелиальную клетку капилляров на другую сторону в интерстиций мозга. В данном случае эндоцитозные пузырьки не взаимодействуют с лизосомами, при этом пузырьки могут сливаться друг с другом, образуя каналы, пересекающие всю клетку.

3. Вторичный транспорт

Вторичный транспорт - это переход  различных частиц и молекул воды за счет ранее запасенной (потенциальной) энергии. Потенциальная энергия создается в виде электрического и концентрационного градиентов, что обеспечивает транспорт веществ через клеточную мембрану нейронов. Ко вторичному относятся следующие виды транспорта.

Диффузия. Согласно законам диффузии, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными - притягиваются друг к другу. Направление диффузии определяется взаимодействием электрического и концентрационного (химического) градиентов. Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц; электрического и концентрационного градиентов для заряженных частиц. Направления действия электрического и концентрационного градиентов могут не совпадать. Например, ионы Na+ в процессе возникновения возбуждения продолжают поступать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечивается концентрационным градиентом вопреки электрическому градиенту. Совокупность химического (концентрационного) и электрического градиентов называют электрохимическим градиентом. Различают простую и облегченную диффузии и осмос как частный случай диффузии.

1. Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные - согласно только химическому градиенту. Через липидный бислой проходят жирорастворимые частицы. Если они находятся в воде по одну сторону мембраны, то могут внедряться в липидную оболочку благодаря тепловому движению. Примером простой диффузии через липидный слой может служить диффузия малых незаряженных полярных молекул: этанола, кислорода, углекислого газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарственных средств.

Этот процесс происходит слишком  медленно и плохо контролируется.

2. Облегченная диффузия осуществляется также согласно концентрационному градиенту и обеспечивает перенос веществ, способных образовывать комплексы с молекулами—переносчиками мембранных белков. Переносчик должен свободно переходить с одной стороны мембраны на другую. Этот транспорт осуществляется очень быстро, поскольку переносчик облегчает переход транспортируемого вещества через мембрану. Движущей силой является градиент транспортируемого вещества. С помощью простой диффузии не могут проходить через мембрану даже небольшие полярные молекулы: моносахариды, аминокислоты. Облегченная диффузия имеет ряд особенностей:

• наличие специфических переносчиков для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за переносчика;

• у молекулы-переносчика может  быть особый канал, пропускающий вещество только одного определенного типа;

• с увеличением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии. Прекращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все переносчики уже заняты, - явление насыщения.

3. Осмос - это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление - это диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Измеряется минимальной величиной механического давления на раствор (например, с помощью поршня), препятствующего движению растворителя через полупроницаемую мембрану. Осмотическое давление одномолярного раствора чрезвычайно велико - 22,4 атм, в плазме крови оно существенно ниже - 7,6 атм, несколько больше внутри клетки, что и обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Осмос продолжается до выравнивания осмотического давления по обе стороны полупроницаемой мембраны. Поэтому при подавлении метаболизма клетки быстро набухают, так как внутри клетки осмотическое давление сохраняется повышенным: внутрь клеток поступает вода и они становятся более упругими. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Информация о работе Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков