Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 20:23, реферат
Мембраны играют ключевую роль, как в структурной организации, так и в функционировании всех клеток - прокариотических и эукариотических, растительных и животных. Мембраны формируют внутриклеточные компартменты, с их помощью происходит разделение содержимого компартментов и окружающей их среды.
ВВЕДЕНИЕ 3
Транспорт веществ через биологические мембраны 4
Пассивный и активный транспорт веществ 4
Первичный транспорт.......................................................................................4
Эндоцитоз и экзоцитоз 5
Вторичный транспорт. Диффузия 6
Строение и функции ионных каналов и переносчиков 9
ЗАКЛЮЧЕНИЕ 11
ЛИТЕРАТУРА 12
Строение и функции ионных каналов и переносчиков
Ионные
каналы - крупные белковые молекулы
и надмолекулярные структуры
липопротеидной природы, встроенные в
мембраны клетки и ее органоидов. Обеспечивают
избирательное прохождение
Трансмембранный транспорт ионов по каналам — основа всех биоэлектрических явлений в организме. Существует большое разнообразие ионных каналов, различающихся по устройству и выполняемым функциям. Численность их может колебаться от нескольких единиц до десятков тысяч на мкм мембраны.
Классифицируют ионные каналы по нескольким признакам.
1. По возможности управления функцией различают неуправляемые (каналы утечки ионов) и управляемые каналы. Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Последние могут быть быстрыми и медленными.
2. В зависимости от стимула, активирующего или инактивирующего управляемые ионные каналы, основными каналами нейронов ЦНС являются потенциалчувствительные и хемочувствительные каналы. При взаимодействии медиатора с рецепторами хемочувствительного канала, расположенного на поверхности клеточной мембраны, может происходить открытие его ворот, поэтому хемочувствительный канал называют также рецепторуправляемым каналом.
3. В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. В нейронах имеются Na-, K-, Са- и С1-селективные каналы. Есть каналы, пропускающие несколько ионов, например Na+, K+ и Са2+, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциалчувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов, постсинаптических мембран, через каналы которых могут одновременно проходить ионы Na+ и К+.
4. Для одного и того же иона может быть несколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие: каналы для ионов К+, каналы для ионов Na+.
Устройство ионных каналов и их функционирование.
Механизм работы ионных насосов заключается в следующем. Na/K-насос - молекула интегрального белка, пронизывающая всю толщу клеточной мембраны, переносит за один цикл 3 иона Na+ из клетки и 2 иона К+ в клетку (антипорт - противотранспорт). Это осуществляется в результате конформации молекулы белка в форму E1 или Е2. Молекула имеет участок, который связывает либо ион Na+, либо ион К+, - это активный участок. При конформации E1 белковая молекула активной своей частью обращена внутрь клетки и обладает сродством к иону Na+, который присоединяется к белку, в результате чего активируется его АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. В результате освобождения энергии изменяется конформация молекулы белка: она превращается в форму Е2, в результате чего активный ее участок уже обращен наружу клеточной мембраны. Теперь белок теряет сродство к иону Na+, последний отщепляется от него, а белок-помпа приобретает сродство к иону К+ и соединяется с ним. Это ведет снова к изменению конформации переносчика: форма Е2 переходит в форму E1, активный участок белка снова обращен внутрь клетки. При этом он теряет сродство к иону К+ и последний отщепляется, а белок приобретает снова сродство к иону Na+ - цикл повторяется. Насос является электрогенным, поскольку за один цикл выводится из клетки 3 иона Na+, а возвращаются в клетку 2 иона К+. Энергия расходуется только на перенос ионов Na+. На обеспечение одного цикла работы Na/K-помпы расходуется одна молекула АТФ.
Подобным образом работают Са-АТФазы эндоплазматического ретикулума и клеточной мембраны, с той лишь разницей, что переносятся только ионы Са и в одном направлении - из гиалоплазмы в эндоплазматический ретикулум, а также наружу клетки.
Каналы имеют устье и селективный фильтр, а управляемые каналы - и воротный механизм. Они заполнены жидкостью, размеры каналов 0,3-0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Ионные каналы блокируются специфическими веществами и фармакологическими препаратами. Новокаин, например, как местный анестетик снимает болевые ощущения потому, что он, блокируя Na-каналы, прекращает проведение возбуждения по нервным волокнам.
ЗАКЛЮЧЕНИЕ
В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.
Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузионные процессы. Нельзя преувеличить роль транспорта веществ через плазматическую мембрану в жизнедеятельности клетки. Большинство процессов, связанных с обеспечением клетки энергией и избавлением ее от продуктов распада, основаны на вышеописанных механизмах. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране - та основа, которая обеспечивает жизнедеятельность клетки.
Список использованной литературы
http://www.medkurs.ru/
http://www.sbio.info
А.Н.Ремизов «Медицинская и биологическая физика», 2004г.
В.О. Самойлов «Медицинская биофизика» 2004. 496с.
В.Ф. Антонов «Мембранный транспорт» №6 1997 с.14-20
http://dic.academic.ru/dic.
http://www.xumuk.ru/biochem/
www.medbiophys.ru