Автор работы: Пользователь скрыл имя, 03 Декабря 2014 в 18:08, курсовая работа
Цель работы: выявить механизмы, обеспечивающие формирование устойчивости растений, и основные типы отношений растений к температуре, а также исследование регуляции стрессоустойчивости растений с помощью защитных систем.
Задачи работы:
Определить последствия температурного стресса;
Исследовать основные закономерности формирования устойчивости растений к неблагоприятным факторам среды (низкие и высокие температуры, хлоридное засоление, тяжелые металлы) в зависимости от интенсивности и продолжительности их действия;
Введение……………………………………………………………………..……2
Глава I. Общие представления о стрессе и факторах, вызывающих стресс у растений………………………………………………………………...4
Стресс и «триада» Селье……………………………………………………...4
Основные группы факторов, способных вызвать стресс у растений……...6
Особенности проявления стрессовых реакций у растений……………….10
Глава II. Устойчивость к недостатку или отсутствию кислорода………14
2.1 Понятие гипо– и аноксии……………………………………………………14
2.2 Морфолого-анатомические приспособления к корневой гипоксии……...16
2.3 Повышение устойчивости к гипо- и аноксии……………………………...19
Глава III. Механизмы устойчивости растений…………………………….21
3.1 Засухоустойчивость и устойчивость к перегреву…………………………21
3.2 Устойчивость растений к низким температурам…………………………..28
3.3 Солеустойчивость……………………………………………………………32
3.4 Газоустойчивость……………………………………………………………35
3.5 Радиоустойчивость…………………………………………………………..38
3.6 Устойчивость растений к инфекционным болезням………………………43
Заключение……………………………………………………………………...52
Список используемой литературы….………………………………….….....54
Газоустойчивость растений повышается при оптимизации минерального питания и закалке семенного материала. Замачивание семян в слабых растворах соляной и серной кислот повышает устойчивость растений к кислым газам. Хотя загрязнение атмосферного воздуха наносит большой ущерб растительности, именно растения наряду с регуляцией водного, ветрового и других режимов среды представляют собой мощный фактор, очищающий атмосферу.
3.5 Радиоустойчивость
Биологический эффект ионизирующего излучения является результатом влияния радиации на многих уровнях — от молекулярного до организменного и популяционного. Первичные механизмы действия всех типов излучения на живой организм сходны. Их общая особенность состоит в том, что значительный биологический эффект вызывается слабой энергией и небольшим числом первичных радиационно-химических реакций. Например, при гамма-облучении дозой около 10 Гр (1000 р)1, летальной для млекопитающих, поглощается энергия, равная 8,4 кДж/г, достаточная лишь для повышения температуры на 0,001 °С.
Различают прямое и косвенное действие радиации на живые организмы. Прямое действие состоит в радиационно-химических превращениях молекул в месте поглощения энергии излучения. Прямое попадание в молекулу переводит ее в возбужденное или ионизированное состояние. Поражающее действие связано с ионизацией молекулы. Непрямое, или косвенное, действие радиации состоит в повреждениях молекул, мембран, органоидов, клеток, вызываемых продуктами радиолиза воды, количество которых в клетке при облучении очень велико.
При понижении концентрации кислорода в среде (ткани) уменьшается эффект лучевого поражения, а при увеличении его концентрации действие радиации усиливается. Этот «кислородный эффект» проявляется на всех уровнях организации биологических объектов — от молекулярного до тканевого.
Прямое действие радиации на молекулы объясняют теория «мишеней или попаданий» и вероятностная гипотеза. Согласно первой попадание ионизирующей частицы в чувствительную часть (мишень) молекулы или структуры клетки вызывает ее повреждение, генетические изменения и гибель. Обнаружено, что с увеличением дозы количество повреждений в облучаемом объеме увеличивается в геометрической прогрессии, причем повреждение может быть результатом как одного попадания, так и нескольких. По вероятностной гипотезе взаимодействие излучения с мишенью происходит по принципу случайности, а реакция на излучение зависит от состояния биологической системы в момент действия излучения.
Дальнейшие этапы развития лучевого поражения связаны с непрямым действием ионизирующих излучений. Повреждения, возникшие первоначально, могут усиливаться: 1) вследствие возникновения под действием излучений радиотоксинов (липидных пероксидов, хинонов и др.), приводящих к автоокислению липидов мембран, окислению SH-rpynn мембранных белков, нарушению функционирования систем транспорта в мембранных образованиях клеток; 2) при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков; 3) из-за повреждения ферментов, обеспечивающих синтез биологически важных соединений и т. д.
Для клетки наиболее опасно нарушение облучением уникальной структуры ДНК. При прямом действии излучения на молекулу ДНК происходят разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований (чаще других — тимина) и т. д. Эти повреждения могут накапливаться.
Другие изменения касаются радиационных влияний на ядерную мембрану и хроматин. На структуре хроматина сказываются депротеинизация участков ДНК и активация ДНКаз как следствие нарушения проницаемости ядерной мембраны. Облучение может также инактивировать ферменты, участвующие в репарации повреждений молекулы ДНК. Эти и другие повреждения как на уровне ДНК, так и хроматина в конечном счете выражаются в изменениях белкового синтеза, прохождения фаз клеточного цикла, в образовании хромосомных аберраций, увеличении частоты мутаций в клетках, нарушении систем регуляции и гибели клетки.
Самая четкая реакция на лучевое воздействие - гибель организмов. Различают дозы облучения, вызывающие 100%-ный летальный исход (ЛД100), и дозы менее летальные (например, при ЛД50 летальность = 50 %). Д. М. Гродзинский и И. Н. Гудков предложили считать, что предел летальных доз характеризует радиоустойчивость организма, а предел доз, вызывающих нелетальные реакции, - его радиочувствительность.
Из тканей растительного организма наиболее уязвимы для радиации меристемы. Их называют критическими тканями растения, поскольку лучевое поражение меристем определяет лучевую болезнь и гибель всего организма.
Однако чувствительность делящихся клеток меристем к облучению на разных этапах митотического цикла неодинакова. У многих объектов максимальная радиочувствительность клеток отмечается в конце фазы G1 когда заканчивается подготовка к синтезу ДНК, а также в премитотической фазе G2. При облучении в клетках, находящихся в фазе G2, обнаруживается максимальное количество хроматидных аберраций.
Типичной реакцией растений на облучение является изменение в ростовых процессах, причем в зависимости от дозы наблюдаются как стимулирующие, так и ингибирующие эффекты. Например, невысокие дозы радиации (0,35 — 0,5 Гр, или 0,035 — 0,05 кр) стимулируют рост проростков гороха и кукурузы в течение 4 — 6 дней после облучения, а затем усиление роста прекращается. Ускорение роста в этом случае сопровождается сокращением продолжительности митотического цикла клеток апикальных меристем, возрастанием интенсивности дыхания и фотосинтеза. Для семян тех же растений дозы, стимулирующие прорастание, выше на порядок и более (3— 10 Гр, или 0,3—1 кр). Стимулирующий эффект невысоких доз (5 Гр, или 500 р) используют в производственных условиях для предпосевного облучения семян кукурузы, что увеличивает ее урожайность на 10—12%.
Наименее радиоустойчивы вегетирующие растения: летальные дозы облучения для проростков высокочувствительных к радиации кормовых бобов (6 — 8 Гр, или 0,6 — 0,8 кр) и гороха (10—15 Гр, или 1,0—1,5 кр) сравнимы с летальными дозами облучения для многих млекопитающих (около 10 Гр, или 1 кр). Облучение приводит к разнообразным морфологическим аномалиям у растений (изменение размеров, скручивание и морщинистость листьев, гипертрофия органов, появление опухолевидных образований на всех органах).
Прорастание семян у разных растений (наблюдения до восьмидневного возраста) подавляется значительно более высокими дозами - от 1 до 35 кГр (100-3500 кр). Радиочувствительность семян зависит также от глубины покоя, проницаемости семенных оболочек для кислорода, содержания в них воды и т. д.
Значительно изменяется радиоустойчивость в онтогенезе растений. Так, формирующиеся семена злаков наиболее радиочувствительны в фазе молочной спелости. При полном созревании радиоустойчивость семян возрастает до максимума. Как отмечалось, начало прорастания приводит к значительному снижению радиоустойчивости, которая несколько возрастает к периоду заложения оси соцветия, но вновь снижается во время споро- и гаметогенеза. Таким образом, растение наиболее чувствительно к облучению при прорастании семян и в период споро- и гаметогенеза. Одноклеточные растения наиболее устойчивы к облучению сразу после окончания деления и в конце фазы синтеза ДНК.
Развитие растений как в филогенезе, так и в онтогенезе происходило и происходит в условиях естественной радиоактивности. На ранних этапах развития жизни на Земле радиоактивный фон был намного выше современного и постепенно уменьшался из-за распада многих радиоактивных элементов земной коры. Возможно поэтому организмам более древнего происхождения свойственна повышенная радиоустойчивость. Высокие дозы радиации способны переносить цианобактерии, грибы и лишайники.
Радиочувствительность различных видов, семейств, порядков, классов, отделов высших растений коррелирует с их положением в филогенетической системе. Радиопластичность вида связана с его ареалом: чем шире ареал, тем больше внутривидовая изменчивость по устойчивости к облучению.
Сортовые различия радиочувствительности растений одного и того же вида коррелируют с экологическими условиями выведения и выращивания до облучения: во влажном и прохладном климате они менее устойчивы, чем в жарком и сухом. Для подвидов устойчивость к облучению определяется географическими центрами их происхождения: растения абиссинского и азиатского очагов устойчивее, чем средиземноморского и европейского.
Все голосеменные растения радиочувствительны, а у покрытосеменных отмечено широкое разнообразие по этому признаку. Так, в классе однодольных все виды среднеустойчивы и радиочувствительны, а у двудольных порядки с примитивными признаками (древесный и кустарниковый типы, недоразвитый тип зародыша) более чувствительны к облучению, а порядки с более совершенными вторичными признаками (травянистый тип, развитый зародыш) — более устойчивы.
Устойчивость растений к действию радиации может определяться рядом факторов как на молекулярном, так и на более высоких уровнях организации:
1. Степень радиационного
2. Защиту на уровне клетки осуществляют вещества-радиопротекторы. Их функция состоит в гашении свободных радикалов, возникающих при облучении, в создании локального недостатка кислорода или в блокировании реакций с участием продуктов — производных радиационно-химических процессов.
Функцию радиопротекторов выполняют сульфгидрильные соединения (глутатион, цистеин, цистеамин и др.) и такие восстановители, как аскорбиновая кислота; ионы металлов и элементы питания (бор, висмут, железо, калий, кальций, кобальт, магний, натрий, сера, фосфор, цинк); ряд ферментов и кофакторов (каталаза, пероксидаза, полифенолоксидаза, цитохром с, NAD); ингибиторы метаболизма (фенолы, хиноны); активаторы (ИУК, кинетин, гибберелловая кислота) и ингибиторы роста (абсцизовая кислота, кумарин) и др.
3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки с разной интенсивностью деления; б) асинхронностью делений в меристемах, так что в каждый данный момент в них содержатся клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью; в) существованием в апикальных меристемах фонда клеток типа покоящегося центра, которые приступают к энергичному делению при остановке деления клеток основной меристемы и восстанавливают как инициальные клетки, так и меристему; г) наличием покоящихся меристем типа спящих почек, которые при гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.
Все эти механизмы защиты и восстановления не являются специфичными только для растений и поэтому их изучение важно для решения проблемы радиоустойчивости как растений, так и других живых организмов.
3.6 Устойчивость растений к инфекционным болезням
Помимо устойчивости к рассмотренным выше факторам внешней среды, растения должны обладать защитой от огромного числа биотических факторов и прежде всего от микроорганизмов — потенциальных патогенов, которыми окружено растение в течение онтогенеза. У дикорастущих форм в результате длительной сопряженной эволюции с другими организмами вырабатывались разнообразные защитные механизмы, которые не всегда представлены у культурных растений. Поэтому выяснение естественных механизмов устойчивости, помимо общенаучного значения, важно и для определения способов борьбы с болезнями сельскохозяйственных растений.
Устойчивость к болезни есть способность растения предотвращать, ограничивать или задерживать ее развитие. Устойчивость может быть неспецифической, или видовой, и специфической, или сортовой.
Видовая устойчивость защищает растения от огромного количества сапрофитных микроорганизмов. Этот тип устойчивости предлагается также называть фитоиммунитетом (от лат. immunitas — освобождение от чего-либо), поскольку видовая устойчивость касается болезней неинфекционных для данного вида растений. Благодаря видовой устойчивости каждый вид растений поражается лишь немногими возбудителями. Специфическая устойчивость имеет отношение к паразитам, способным преодолевать видовую устойчивость растения и поражать растение в той или иной степени. Эта устойчивость очень важна для культурных растений, так как именно специфические патогены обусловливают более 90% потерь от болезней сельскохозяйственных культур.
Инфекционные болезни растений вызываются паразитическими грибами и бактериями, вирусами, растительными почвенными нематодами (фитогельминты), паразитическими цветковыми растениями (повилика, заразиха, омела). Фитогельминты и растения-паразиты могут быть переносчиками вирусов. Наибольшие потери урожаев вызывают грибные заболевания, несколько меньшие — вирусные и бактериальные. Это связано со значительно большим числом видов грибов-патогенов (более 10000 видов) по сравнению с бактериями, поражающими растения (150 — 200 видов).
Характеристика возбудителей болезней. Различают следующие группы патогенов:
Информация о работе Механизмы защиты и устойчивости растений