Новые направления клеточной биологии

Автор работы: Пользователь скрыл имя, 23 Мая 2015 в 15:16, реферат

Описание работы

Конец ХХ и начало XXI века ознаменовались всплеском интереса к проблемам клеточной биологии. В значительной степени это связано с тем, что достижения в этой области могут оказаться исключительно перспективными для репаративной медицины, т.е. той части медицины, которая занимается пересадкой, восстановлением и воссозданием у человека искусственных органов взамен больных или утраченных.

Файлы: 1 файл

ref_8548_parta_ua.doc

— 162.50 Кб (Скачать файл)

Если для создания графта применялся собственный клеточный материала пациента, то происходит практически полная интеграция графта со скорейшим восстановлением функции регенерируемого органа. В случае использования графта с донорскими клетками в организме включаются механизмы индукции и стимуляции собственной репаративной активности, и за 1–3 месяца собственные клетки полностью замещают разрушающиеся клетки графта.

Биоматериалы, используемые для получения матриц, должны быть биологически инертными и после графтинга (перенесения в организм) обеспечивать локализацию нанесенного на них клеточного материала в определенном месте. Большинство биоматериалов тканевой инженерии легко разрушаются (резорбируются) в организме и замещаются его собственными тканями. При этом не должны образовываться промежуточные продукты, обладающие токсичностью, изменяющие рН ткани или ухудшающие рост и дифференцировку клеточной культуры. Нерезорбируемые материалы почти не применяются, т.к. они ограничивают регенерационную активность, вызывают избыточное образование соединительной ткани, провоцируют реакцию на инородное тело (инкапсуляцию).

Для создания тканей и органов применяются в основном синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы (табл. 3).

Таблица 3. Классы биоматериалов, применяемых в тканевой инженерии.

Биоматериал

Биосовмести-

мость (включая

цитотоксичность)

Токсичность

Резорбция

Область применения

Синтетические: Полимеры на основе органических кислот

Гидроксиапатит

+

+

++

+

Полная до СО2 и Н2О

Нерезорбируемый

Хирургия, в тканевой инженерии как матрица-носитель практически для всех культур клеток. Костная ткань

Природные:

Альгинат

++

+

Полная

Перевязочные материалы, в тканевой инженерии в виде гидрогелей (хондробласты, нервные клетки)

Хитозан

++

+

Полная

Перевязочные материалы, в ТИ в виде пленок, губок; в сочетании с коллагеном (реконструкция костной, мышечной, хрящевой тканей, сухожилий)

Коллаген

+++

–/+

Замещение собственными белками, ферментативный лизис

Перевязочные материалы, в ТИ (губки, трехмерные модели, пленки) как матрица-носитель практически для всех культур клеток.

Внеклеточный матрикс (естественные биологические мембраны)

++++

(за счет включенных в структуры  биологически активных веществ  и факторов роста)

–/+

Ремоделирование с заменой собственными белками

Шовный материал, в ТИ (трехмерные модели, пленки) как матрица-носитель для практически всех культур клеток


Одними из первых в тканевой инженерии стали применяться биодеградируемые синтетические биоматериалы на основе полимеров органических кислот, например молочной (PLA, полилактат) и гликолевой (PGA, полигликолид). При этом в состав полимера может входить как один тип кислотного остатка, так и их сочетания в различных пропорциях. Матрицы на основе органических кислот легли в основу создания таких органов и тканей, как кожа, кость, хрящ, сухожилие, мышцы (поперечно-полосатая, гладкая и сердечная), тонкая кишка и др. Однако у этих материалов имеются недостатки: изменение рН окружающих тканей при расщеплении в организме и недостаточная механическая прочность, что не позволяет использовать их как универсальный материал для матриц и подложек.

Особое место среди материалов для биоматриц-носителей занимают коллаген, хитозан и альгинат.

Коллаген практически не имеет антигенных свойств. Использованный в качестве матрицы, он разрушается за счет ферментативного гидролиза и структурно замещается собственными белками, синтезируемыми фибробластами. Из коллагена могут быть изготовлены матрицы с заданными свойствами для реконструкции практически любых органов и тканей. Являясь естественным тканевым (межклеточным) белком, он оптимально подходит в качестве носителя культуры клеток, обеспечивая рост и развитие ткани.

Альгинат – полисахарид из морских водорослей, может быть использован в качестве матрицы-носителя, однако не обладает достаточной биологической совместимостью и оптимальными механическими свойствами. Обычно он используется в виде гидрогелей для восстановления хрящевой и нервной ткани.

Хитозан – азотсодержащий полисахарид, который является основной составляющей наружного покрова насекомых, ракообразных и паукообразных. Этот биоматериал получают из хитиновых панцирей ракообразных и моллюсков. В настоящее время заслуживает внимания комбинированный по составу препарат – коллагеново-хитозановый комплекс. В ходе лабораторных и клинических исследований была показана его инертность и способность сохранять жизнеспособность клеточной культуры как in vitro, так и in vivo. Этот комплекс разрешен Минздравом РФ в качестве перевязочного, ранозаживляющего средства и уже используется в клинической практике в хирургии и стоматологии.

Современные возможности тканевой инженерии

Большинство исследований в области тканевой инженерии направлены на получение того или иного эквивалента тканей. Самое изученное направление тканевой инженерии – реконструкция соединительной ткани, особенно костной. В первой работе в этой области была описана реконструкция костно-хрящевого фрагмента бедренной кости кролика. Основной проблемой, с которой столкнулись исследователи, был выбор биоматериала и взаимодействие костной и хрящевой тканей в графте. Эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани. Затем полученные остеобласты наносят на различные материалы, поддерживающие их деление, – донорскую кость, PGA, коллагеновые матрицы, пористый гидроксиапатит и др. Графт сразу помещают в место дефекта или предварительно выдерживают в мягких тканях. Основной проблемой таких конструкций исследователи считают несоответствие скорости образования кровеносных сосудов в новой ткани и сроков жизни клеток в глубине графта. Для решения этой проблемы графт размещают около крупных сосудов.

Гистогенез мышечных тканей в большой степени зависит от развития нервно-мышечных взаимодействий. Отсутствие адекватной иннервации конструкций мышечных тканей пока не позволяет создать функционирующие тканевые эквиваленты поперечно-полосатой мышечной ткани. Гладкая мускулатура менее чувствительна к денервации, т.к. имеет некоторую способность к автоматизму. Гладкомышечные тканевые конструкции используют при создании таких органов, как мочеточник, мочевой пузырь, кишечная трубка. В последнее время все большее внимание уделяется попыткам реконструкции сердечной мышцы с помощью графтов, содержащих сердечные миоциты, полученные путем направленной дифференцировки малодифференцированных клеток костного мозга.

Одним из самых важных направлений в тканевой инженерии является изготовление эквивалентов кожи. Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых поверхностей.

Основными точками приложения тканевой инженерии в кардиологии можно считать создание искусственных клапанов сердца, реконструкцию крупных сосудов и капиллярных сетей. Имплантаты из синтетических материалов недолговечны и часто приводят к образованию тромбов. При использовании трубчатых (сосудистых) графтов на биодеградируемых матрицах получены положительные результаты в экспериментах на животных, однако нерешенной проблемой остается контролируемая прочность и сила сопротивления стенок графта пульсовому давлению крови.

Создание искусственных капиллярных сетей актуально при лечении патологий микроциркуляции крови при таких заболеваниях, как облитерирующий эндартериит, сахарный диабет и др. Положительные результаты здесь получены при использовании биодеградируемых графтов, выполненных в виде сосудистой сети.

Восстановление органов дыхания, таких как гортань, трахея и бронхи, также возможно с помощью тканевых конструкций из биодеградируемых или композитных материалов с нанесенными на них эпителиальными клетками и хондробластами.

Заболевания и пороки развития тонкого кишечника, сопровождающиеся его значительным укорочением, приводят к тому, что пациенты вынуждены пожизненно получать специальные питательные смеси и парентеральные растворы. В таких случаях удлинение функциональной части тонкого кишечника – единственная возможность облегчить их состояние. Алгоритм изготовления графта сводится к следующему: на биодеградируемую мембрану наносятся клетки эпителиального и мезенхимального происхождения и помещаются в сальник или брыжейку кишки для созревания. Спустя определенное время собственную кишку соединяют с графтом. Эксперименты на животных показали улучшение всасывающей активности, однако из-за отсутствия иннервации искусственная кишка не обладает способностью к перистальтике и регуляции секреторной активности.

Основная сложность в тканевой инженерии печени заключается в формировании трехмерной структуры ткани. Оптимальной биоматрицей для клеточной культуры является внеклеточный матрикс печени. Исследователи полагают, что к успеху приведет применение пористых биополимеров с заданными свойствами. Предпринимаются попытки применения постоянного магнитного поля для трехмерной организации клеточной культуры. Остаются нерешенными проблемы кровоснабжения больших по размерам графтов и отвода желчи, поскольку в графтах отсутствуют желчные протоки. Однако существующие методики уже позволяют компенсировать некоторых генетические аномалии печеночных ферментных систем, а также ослабить проявления гемофилии у лабораторных животных.

Конструирование желез внутренней секреции находится на стадии экспериментальной проверки методик на лабораторных животных. Наибольшие успехи достигнуты в тканевой инженерии слюнных желез, получены конструкции, содержащие клетки поджелудочной железы.

Пороки развития мочевыделительной системы составляют до 25% всех пороков развития. Тканевая инженерия в этом направлении медицины очень востребована. Создание эквивалентов почечной ткани – достаточно сложная задача, и решить эту проблему пытаются с помощью технологий прямого органогенеза, используя эмбриональные закладки почечной ткани. На лабораторных животных была показана возможность восстановления различных органов и тканей мочевыделительной системы.

Одной из важнейших задач является восстановление органов и тканей нервной системы. Тканеинженерные конструкции могут быть использованы для восстановления как центральной, так и периферической нервной системы. В качестве клеточного материала для репарации спинного мозга могут быть использованы клетки обонятельных луковиц и трехмерные биодеградируемые гели. Для периферической нервной системы используют биодеградируемые трубчатые графты, внутри которых рост аксона осуществляется по шванновским клеткам.

Создание искусственных органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов. В ближайшее время эти технологии будут внедряться во все области медицины.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://bio.1september.ru

 


Информация о работе Новые направления клеточной биологии