Автор работы: Пользователь скрыл имя, 14 Октября 2013 в 20:24, лекция
Антибиотики — самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К этому же классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. В 1980 г. мировое производство антибиотиков составляло примерно 25000 т, из них 17000 т — пенициллины, 5000 т — тетрациклины, 1200 т — цефалоспорины и 800 т — эритромицины. В 1945 г. Бротзу из Института гигиены в Кальари (Сардиния) выделил из пробы морской воды плесень Cephalosporium acremonium, синтезирующую несколько антибиотиков; один из них, цефалоспорин С, оказался особенно эффективен против устойчивых к пенициллину грамположительных бактерий.
Ферментация или брожение протекает в специальном сосуде - биореакторе, где к раствору добавляется чистая культура дрожжей. Если можно внести какую-нибудь биотехнологическую новизну в эту ставшую классической технологию -- это в первую очередь касается культуры дрожжей. С этой целью традиционно использовали селективно отобранные в течение сотен лет дрожжи.
4. Технология производства сахарозаменителей
Употребление сахарозы или любого другого натурального сахара даже при рациональном подходе в ряде случаев вызывает развитие атеросклероза, диабет, прибавление в весе и ряд других патологий. Поэтому большое внимание уделяется изысканию эквивалентных вкусовых сахарозаменителей не сахаристой природы. Соединения, обладающие сладким вкусом, могут быть разделены на две группы: природные органические соединения - белки, дипептиды и другие натуральные соединения и вещества, полученные путем химического синтеза.
Как правило, при выборе сахарозаменителей большое внимание уделяется их способности включаться в метаболизм, калорийности, безопасности для здоровья человека, а также себестоимости и технологии получения. На сегодняшний день в научной литературе описано большое количество сахарозаменителей, но по разным причинам реально в практике применяется только их небольшая часть.
К натуральным сладким соединениям относятся моносахариды и низкомолекулярные олигосахариды, продукты гидролиза крахмала и частичной изомеризации - смесь глюкозы и фруктозы, а также соединения неуглеводного типа. Сахарозаменитель сахарин, получаемый химическим синтезом и в течение нескольких десятков лет интенсивно используемый в кондитерской промышленности, сегодня полностью вытеснен новыми натуральными, низкокалорийными сахарозаменителями, например, метилированным дипептидом аспартамом, производимым биотехнологическим методом. Аспартам (торговое название "Нутрисвит") широко применяется в производстве диетических напитков.
При синтезе
аспартама аминокислота фенилаланин
является самым дорогим компонентом,
ее в большом количестве получают
путем культивирования
Среди большого числа других сахарозаменителей заслуживает внимания стевиозид, содержащийся в растении Stevia vebaudiana, распространенном в Южной Америке. Это растение культивируется на Черноморском побережье, дает хороший урожай в виде сладких листьев. Широкое использование стевиозида в пищевой промышленности пока ограничено ввиду сложности его получения в чистом виде.
Сахарозаменители
другого типа -- флавонол-7-глюкозиды -содержат цитрусовые
растения. В результате незначительной
химической модификации этих соединений
образуются дигидрохалконы, которые намного
слаще сахара. Наибольший интерес среди
этих соединений представляют нарингениндигидрохалкон,
неогесперединдигидрохалкон и гесперединдигидрохалкон-4-Я-D-
Тауматин - соединение белкового происхождения. В промышленных масштабах тауматин получают экстракцией из плодов этого растения. Из всех известных сегодня сахарозаменителей это соединение - самое сладкое.
Сахарозаменители
используются в производстве разных
напитков (алкогольных и безалкогольных)
5. Съедобные водоросли
Народы Тихоокеанского
побережья с давних пор употребляют
в пищу морские и океанские
водоросли. Жители Гавайских островов
из 115 видов водорослей, обитающих
в местных океанских
В последнее время внимание специалистов, занимающихся вопросами питания, привлекает сине-зеленая водоросль спирулина (Spirulina platensis и Spirulina maxima), растущая в Африке (оз. Чад} и в Мексике (оз. Тескоко). Для местных жителей спирулина является одним из основных продуктов питания, так как содержит много белка, витамины А, С, D и особенно много витаминов группы В. Биомасса спирулины приравнивается к лучшим стандартам пищевого белка, установленным ФАО. Спи-рулину можно успешно культивировать в открытых прудах или в замкнутых системах из полиэтиленовых труб и получать высокие урожаи (примерно 20 г биомассы в пересчете на СВ с 1 м3 в сут).
6. Уксусная кислота
Уксус в виде прокисшего
вина был известен за 7 тыс. лет до
н.э., но только в 1868 г. Луи Пастер установил
физиологическую природу
Чтобы уксуснокислое брожение протекало нормально, сахар, содержащийся в сбраживаемом субстрате, должен быть превращен в этиловый спирт, поэтому уксуснокислому брожению предшествует спиртовое. В производстве уксуса спиртовое брожение лучше всего осуществляют селекционированные штаммы винных дрожжей (например, Saccharomyces ellipsoideus), которые помимо этанола синтезируют побочные продукты метаболизма, улучшающие вкус и аромат уксуса. Уксус, полученный микробиологическим путем (пищевая уксусная кислота, столовый уксус), как и вино, различается по сортам в зависимости от характера сбраживаемого субстрата. Известен яблочный, виноградный, грушевый и другие сорта уксуса. Уксус, полученный при брожении, имеет приятные аромат и вкус, которые обусловливают побочные продукты брожения: сложные эфиры (этилацетат и др.), высшие спирты, органические кислоты.
Установлено, что продуцент уксусной кислоты из рода Acetobacter, развиваясь на поверхности среды, образует слизистую пленку, которая состоит из целлюлозы (90%) и клеток бактерий (J. D. Fontana, 1989). Если эту пленку снять, высушить и соответственно обработать, можно получить достаточно прочные биофильмы медицинского назначения. Если ожоговые раны покрыть такими биофильмами, они заживают в течение 7--8 сут.
Ферментацию сахарозных сред реализуют в две стадии. На первой стадии при помощи дрожжевой инвертазы получают инвертный сахар, на второй с помощью Acetobacter xylinum -уксусную кислоту. Вторая стадия длится 60 ч, за это время углеводы (их содержится 6%) сбраживаются, рН снижается до 2, и на поверхности жидкой фазы формируется целевой, продукт -- биофильм.
7. Лимонная кислота
В природе это вещество встречается довольно часто, главным образом в незрелых плодах цитрусовых, ананасов, груш, инжира, брусники, клюквы и др.
Для получения лимонной кислоты путем микробного синтеза в лабораторных условиях использовали микромицеты (Aspergillus clavatus, Penicillium luteum, P. citricum, Mucor piriformis, Ustina vulgaris и др.), но для промышленного биосинтеза наиболее подходящим оказался Aspergillus niger. Впоследствии из него было селекционировано множество производственных штаммов для биосинтеза лимонной кислоты из сахарозы.
Многие органические вещества сбраживаются микромицетами и могут быть трансформированы в лимонную кислоту, но максимальный выход получается при биосинтезе из сахарозы или фруктозы. В последнее время успешно завершены эксперименты по биосинтезу лимонной кислоты дрожжами (Candida lipolytica и др.) из парафинов и низших спиртов (этанола) с высоким выходом (80--140%). Лимонную кислоту широко используют в кулинарии и в пищевой промышленности для приготовления безалкогольных напитков, мармелада, вафель, пастилы и др. Лимонная кислота включена в рецептуры некоторых сортов колбас и сыра, ее применяют в виноделии, для рафинирования растительных масел, для производства сгущенного молока. С помощью лимонной кислоты сохраняются естественные вкус и аромат при длительном хранении в замороженном состоянии мяса и рыбы.
При умеренном употреблении лимонная кислота стимулирует деятельность поджелудочной железы, возбуждает аппетит, способствует усвоению пищи.
Натриевые соли лимонной кислоты
стимулируют вспенивание и
8. Молочная кислота
Эта кислота всегда присутствует в кислом молоке и в виде побочного продукта при получении уксусной и лимонной кислот.
Молочнокислые бактерии трансформируют в молочную кислоту самые разные углеводы, поэтому для промышленного получения этой кислоты используют глюкозу, мальтозу, сахарозу, лактозу, осахаренный крахмал и пр. После выбора субстрата подыскивают подходящий продуцент. Для сбраживания глюкозы или мальтозы обычно применяют штаммы Lactobacillus delb-rueckii, L. leichmannii или L. bulgaricus. Для сбраживания ocaхаренного крахмала используют смесь молочнокислых бактерий L, delbrueckii или с L. bulgaricus, или со Streptococcus lactis. При сбраживании мальтозы выход молочной кислоты выше при использовании L. bulgaricus или L. casei.
Молочную кислоту используют в пищевой промышленности (для приготовления кондитерских изделий, безалкогольных напитков), в производстве витаминов, в медицинской промышленности, в производстве пластмасс и в других отраслях народного хозяйства.