Промышленная биотехнология

Автор работы: Пользователь скрыл имя, 14 Октября 2013 в 20:24, лекция

Описание работы

Антибиотики — самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К этому же классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. В 1980 г. мировое производство антибиотиков составляло примерно 25000 т, из них 17000 т — пенициллины, 5000 т — тетрациклины, 1200 т — цефалоспорины и 800 т — эритромицины. В 1945 г. Бротзу из Института гигиены в Кальари (Сардиния) выделил из пробы морской воды плесень Cephalosporium acremonium, синтезирующую несколько антибиотиков; один из них, цефалоспорин С, оказался особенно эффективен против устойчивых к пенициллину грамположительных бактерий.

Файлы: 1 файл

БИОТЕХНОЛОГИИ.doc

— 390.50 Кб (Скачать файл)

Ферментация или  брожение протекает в специальном  сосуде - биореакторе, где к раствору добавляется чистая культура дрожжей. Если можно внести какую-нибудь биотехнологическую новизну в эту ставшую классической технологию -- это в первую очередь касается культуры дрожжей. С этой целью традиционно использовали селективно отобранные в течение сотен лет дрожжи.

4. Технология  производства сахарозаменителей

Употребление  сахарозы или любого другого натурального сахара даже при рациональном подходе  в ряде случаев вызывает развитие атеросклероза, диабет, прибавление  в весе и ряд других патологий. Поэтому большое внимание уделяется изысканию эквивалентных вкусовых сахарозаменителей не сахаристой природы. Соединения, обладающие сладким вкусом, могут быть разделены на две группы: природные органические соединения - белки, дипептиды и другие натуральные соединения и вещества, полученные путем химического синтеза.

Как правило, при  выборе сахарозаменителей большое  внимание уделяется их способности  включаться в метаболизм, калорийности, безопасности для здоровья человека, а также себестоимости и технологии получения. На сегодняшний день в научной литературе описано большое количество сахарозаменителей, но по разным причинам реально в практике применяется только их небольшая часть.

К натуральным  сладким соединениям относятся  моносахариды и низкомолекулярные олигосахариды, продукты гидролиза крахмала и частичной изомеризации - смесь глюкозы и фруктозы, а также соединения неуглеводного типа. Сахарозаменитель сахарин, получаемый химическим синтезом и в течение нескольких десятков лет интенсивно используемый в кондитерской промышленности, сегодня полностью вытеснен новыми натуральными, низкокалорийными сахарозаменителями, например, метилированным дипептидом аспартамом, производимым биотехнологическим методом. Аспартам (торговое название "Нутрисвит") широко применяется в производстве диетических напитков.

При синтезе  аспартама аминокислота фенилаланин  является самым дорогим компонентом, ее в большом количестве получают путем культивирования соответствующего продуцента. Токсикологические исследования в течение десяти лет предшествовали применению аспартама в производстве пищевых продуктов.

Среди большого числа других сахарозаменителей  заслуживает внимания стевиозид, содержащийся в растении Stevia vebaudiana, распространенном в Южной Америке. Это растение культивируется на Черноморском побережье, дает хороший урожай в виде сладких листьев. Широкое использование стевиозида в пищевой промышленности пока ограничено ввиду сложности его получения в чистом виде.

Сахарозаменители  другого типа -- флавонол-7-глюкозиды -содержат цитрусовые растения. В результате незначительной химической модификации этих соединений образуются дигидрохалконы, которые намного слаще сахара. Наибольший интерес среди этих соединений представляют нарингениндигидрохалкон, неогесперединдигидрохалкон и гесперединдигидрохалкон-4-Я-D-глюкозид. Последние два соединения в 300 раз слаще сахарозы. Что касается нарингениндигидрохалкона, характеризующегося незначительной токсичностью, тоэто соединение в 2000 раз слаще сахарозы. Хорошим сырьем для получения неогесперединдигидрохалкон-4-Я-глюкозида является цитрусовый отжим, накапливающийся при переработке цитрусовых (получение сока).

Тауматин - соединение белкового происхождения. В промышленных масштабах тауматин получают экстракцией  из плодов этого растения. Из всех известных сегодня сахарозаменителей это соединение - самое сладкое.

Сахарозаменители  используются в производстве разных напитков (алкогольных и безалкогольных), варений, джемов, пирожных, конфет, жевательных  резинок и других сладких продуктов.

5. Съедобные  водоросли

Народы Тихоокеанского побережья с давних пор употребляют  в пищу морские и океанские  водоросли. Жители Гавайских островов из 115 видов водорослей, обитающих  в местных океанских пространствах, используют в питании 60 видов. В Китае также высоко ценят съедобные водоросли. Особенно ценятся сине-зеленые водоросли Nostoc pruniforme, по внешнему виду напоминающие сливу и по вкусовым качествам причисленные к китайским лакомствам. В кулинарных справочниках Японии встречается более 300 рецептур, в состав которых входят водоросли. На Дальнем Востоке весьма интенсивно используют водоросли в пищевых целях и плантации не успевают восстанавливаться естественным путем. В связи с этим все чаще водоросли культивируют искусственно, в подводных садах. Выращивание аквакультур -- процветающая отрасль биотехнологии. Водоросли используют также в виде сырья для промышленности.

В последнее время внимание специалистов, занимающихся вопросами  питания, привлекает сине-зеленая водоросль  спирулина (Spirulina platensis и Spirulina maxima), растущая в Африке (оз. Чад} и в Мексике (оз. Тескоко). Для местных жителей спирулина является одним из основных продуктов питания, так как содержит много белка, витамины А, С, D и особенно много витаминов группы В. Биомасса спирулины приравнивается к лучшим стандартам пищевого белка, установленным ФАО. Спи-рулину можно успешно культивировать в открытых прудах или в замкнутых системах из полиэтиленовых труб и получать высокие урожаи (примерно 20 г биомассы в пересчете на СВ с 1 м3 в сут).

6. Уксусная кислота

Уксус в виде прокисшего вина был известен за 7 тыс. лет до н.э., но только в 1868 г. Луи Пастер установил  физиологическую природу уксуснокислого брожения, вызываемого уксуснокислыми бактериями Acetobacter oxidans, A. aceti, A. xylinum и др.

Чтобы уксуснокислое брожение протекало нормально, сахар, содержащийся в сбраживаемом субстрате, должен быть превращен в этиловый спирт, поэтому  уксуснокислому брожению предшествует спиртовое. В производстве уксуса спиртовое  брожение лучше всего осуществляют селекционированные штаммы винных дрожжей (например, Saccharomyces ellipsoideus), которые помимо этанола синтезируют побочные продукты метаболизма, улучшающие вкус и аромат уксуса. Уксус, полученный микробиологическим путем (пищевая уксусная кислота, столовый уксус), как и вино, различается по сортам в зависимости от характера сбраживаемого субстрата. Известен яблочный, виноградный, грушевый и другие сорта уксуса. Уксус, полученный при брожении, имеет приятные аромат и вкус, которые обусловливают побочные продукты брожения: сложные эфиры (этилацетат и др.), высшие спирты, органические кислоты.

Установлено, что продуцент  уксусной кислоты из рода Acetobacter, развиваясь на поверхности среды, образует слизистую  пленку, которая состоит из целлюлозы (90%) и клеток бактерий (J. D. Fontana, 1989). Если эту пленку снять, высушить и соответственно обработать, можно получить достаточно прочные биофильмы медицинского назначения. Если ожоговые раны покрыть такими биофильмами, они заживают в течение 7--8 сут.

Ферментацию сахарозных сред реализуют в две стадии. На первой стадии при помощи дрожжевой инвертазы  получают инвертный сахар, на второй с помощью Acetobacter xylinum -уксусную кислоту. Вторая стадия длится 60 ч, за это время  углеводы (их содержится 6%) сбраживаются, рН снижается до 2, и на поверхности жидкой фазы формируется целевой, продукт -- биофильм.

7. Лимонная кислота

В природе это вещество встречается довольно часто, главным  образом в незрелых плодах цитрусовых, ананасов, груш, инжира, брусники, клюквы и др.

Для получения лимонной кислоты  путем микробного синтеза в лабораторных условиях использовали микромицеты (Aspergillus clavatus, Penicillium luteum, P. citricum, Mucor piriformis, Ustina vulgaris и др.), но для промышленного  биосинтеза наиболее подходящим оказался Aspergillus niger. Впоследствии из него было селекционировано множество производственных штаммов для биосинтеза лимонной кислоты из сахарозы.

Многие органические вещества сбраживаются микромицетами и могут  быть трансформированы в лимонную кислоту, но максимальный выход получается при биосинтезе из сахарозы или фруктозы. В последнее время успешно завершены эксперименты по биосинтезу лимонной кислоты дрожжами (Candida lipolytica и др.) из парафинов и низших спиртов (этанола) с высоким выходом (80--140%). Лимонную кислоту широко используют в кулинарии и в пищевой промышленности для приготовления безалкогольных напитков, мармелада, вафель, пастилы и др. Лимонная кислота включена в рецептуры некоторых сортов колбас и сыра, ее применяют в виноделии, для рафинирования растительных масел, для производства сгущенного молока. С помощью лимонной кислоты сохраняются естественные вкус и аромат при длительном хранении в замороженном состоянии мяса и рыбы.

При умеренном употреблении лимонная кислота стимулирует деятельность поджелудочной железы, возбуждает аппетит, способствует усвоению пищи.

Натриевые соли лимонной кислоты  стимулируют вспенивание и механическую устойчивость пен, поэтому лимонную кислоту ценят кулинары, ее также  применяют для изготовления шампуней и моющих средств. Последнее имеет важное экологическое значение, так как лимонная кислота и ее соли легко поддаются микробиологической деградации при очистке канализационных вод.

8. Молочная кислота

Эта кислота всегда присутствует в кислом молоке и в виде побочного продукта при получении уксусной и лимонной кислот.

Молочнокислые бактерии трансформируют в молочную кислоту самые разные углеводы, поэтому для промышленного  получения этой кислоты используют глюкозу, мальтозу, сахарозу, лактозу, осахаренный крахмал и пр. После выбора субстрата подыскивают подходящий продуцент. Для сбраживания глюкозы или мальтозы обычно применяют штаммы Lactobacillus delb-rueckii, L. leichmannii или L. bulgaricus. Для сбраживания ocaхаренного крахмала используют смесь молочнокислых бактерий L, delbrueckii или с L. bulgaricus, или со Streptococcus lactis. При сбраживании мальтозы выход молочной кислоты выше при использовании L. bulgaricus или L. casei.

Молочную кислоту используют в пищевой промышленности (для  приготовления кондитерских изделий, безалкогольных напитков), в производстве витаминов, в медицинской промышленности, в производстве пластмасс и в других отраслях народного хозяйства.


Информация о работе Промышленная биотехнология