Автор работы: Пользователь скрыл имя, 26 Декабря 2012 в 22:08, реферат
Цитология занимает центральное положение в ряду биологических дисциплин, так как клеточные структуры лежат в основе строения, функционирования и индивидуального развития всех живых существ, и, кроме того, она является составной частью гистологии животных, анатомии растений, протистологии и бактериологии.
Введение……………………………………………………………………….
Цитология- наука о клетке………………………………………………..
Развитие науки цитологии………………………………………………...
Место цитологии среди других биологических дисциплин…………….
Значение цитологии в медицине………………………………………….
Заключение……………………………………………………………………
Литература……………………………………………………………………
Содержание
Введение…………………………………………………………
Заключение……………………………………………………
Литература……………………………………………………
Введение
Цитология
занимает центральное
Из среды других биологических наук цитология выделилась почти сто лет назад. За это время практическое и теоретическое значение достижений цитологии только возрастает. Появляются новые сферы, в которых используются достижения цитологии.
Клетка как
элементарная форма
1. Синтез белка
и других органических
2. Проблема накопления биомассы. Мы знаем, что круговорот органического вещества на земле является обязательным условием существования человека. Изучение механизмов размножения, роста клеточной массы и в более общей форме – изучение законов, обеспечивающих репродукцию органического вещества, является в настоящее время уже практически потребностью человека.
3. Проблема резистентности
живой материи. Изучение
4. Проблема злокачественного
роста. Важность решения этой
проблемы известна всем. Проблема
злокачественного роста
5. Проблема передачи
6. Проблема биоэнергетики.
Ни одна из самых совершенных
современных машин по
Вот такая, далеко не полная характеристика стоящих перед современной цитологией фундаментальных биологических проблем свидетельствует о том, что по своему значению для человеческого общества они находятся в одном ряду с самыми первостепенными проблемами естествознания.
Цитология
- наука о строении, функциях, метаболизме,
взаимоотношениях со средой
Цитология (греч. κύτος - пузырьковидное образование и λόγος - слово, наука) - раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.
Также используются термины клеточная биология, биология клетки (англ. Cell Biology).
Цитология
занимает центральное
Впервые название «клетка» в середине XVII в. применил Р. Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.
Клеточная теория. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838) . Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т. Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.
Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ. Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического мира.
Прогресс цитологии
связан с развитием методов
В 18 в. конструкция микроскопа была несколько улучшена, главным образом за счёт усовершенствования механических частей и осветительных приспособлений. Техника исследования оставалась примитивной; изучались в основном сухие препараты.
В первые десятилетия 19 в. представления о роли клеток в строении организмов значительно расширились. Благодаря трудам немецких учёных Г. Линка, Я. Мольденхавера, Ф. Мейена, Х. Моля, французских учёных Ш. Мирбеля, П. Тюрпена и др. в ботанике утвердился взгляд на клетки как на структурные единицы. Было обнаружено превращение клеток в проводящие элементы растений. Стали известны низшие одноклеточные растения. На клетки начали смотреть как на индивидуумы, обладающие жизненными свойствами. В 1835 Моль впервые наблюдал деление растительных клеток. Исследования французских учёных А. Мильн-Эдвардса, А. Дютроше, Ф. Распая, чешского учёного Я. Пуркине и др. к середине 30-х гг. дали большой материал по микроскопическим структурам животных тканей. Многие исследователи наблюдали клеточное строение различных органов животных, а некоторые проводили аналогию между элементарными структурами животных и растительных организмов, подготовляя тем самым почву для создания общебиологической клеточной теории. В 1831—33 гг. английский ботаник Р. Броун описал ядро как составную часть клетки. Это открытие привлекло внимание исследователей к содержимому клетки и дало критерий для сопоставления животных и растительных клеток, что и сделал, в частности, Я. Пуркине (1837). Немецкий учёный Т. Шванн, опираясь на теорию развития клеток немецкого ботаника М. Шлейдена, где особое значение придавалось ядру, сформулировал общую клеточную теорию строения и развития животных и растений (1838—39). Вскоре клеточная теория была распространена и на простейших (немецкий учёный К. Зибольд, 1845—48). Создание клеточной теории явилось сильнейшим стимулом к изучению клетки как основы всего живого. Большое значение имело введение в микроскопию иммерсионных объективов (водная иммерсия, 1850, масляная, 1878), конденсора Э. Аббе (1873) и апохроматов (1886). В середине 19 в. начали применяться различные методы фиксации и окраски тканей. Для изготовления срезов были разработаны методы заливки кусочков ткани. Вначале срезы изготовлялись с помощью ручной бритвы, а в 70-х гг. для этого использовались особые приборы — микротомы. В ходе развития клеточной теории постепенно выяснилась ведущая роль содержимого клетки, а не её оболочки. Представление об общности содержимого различных клеток нашло своё выражение в распространении примененного к нему Молем (1844, 1846) термина «протоплазма», введённого Пуркине (1839). Вопреки взглядам Шлейдена и Шванна на возникновение клеток из бесструктурного неклеточного вещества — цитобластемы, с 40-х гг. 19 в. начинает укрепляться убеждение, что умножение числа клеток происходит путём их деления (немецкие учёные К. Негели, Р. Келликер и Р. Ремак). Дальнейшим толчком к развитию цитологии послужило учение немецкого патолога Р. Вирхова о «целлюлярной патологии» (1858). Вирхов рассматривал животный организм как совокупность клеток, каждая из которых обладает всеми свойствами жизни; он выдвинул принцип «omnis cellula е cellula» [каждая клетка (происходит только) из клетки]. Выступая против гуморальной теории патологии, которая сводила болезни организмов к порче организменных соков (крови и тканевой жидкости), Вирхов доказывал, что в основе всякого заболевания лежит нарушение жизнедеятельности тех или иных клеток организма. Учение Вирхова заставило патологов заняться изучением клеток. К середине 19 в. «оболочечный» период в изучении клетки заканчивается, и в 1861 работой немецкого учёного М. Шульце утверждается взгляд на клетку как на «комок протоплазмы с лежащим внутри него ядром». В том же году австрийский физиолог Э. Брюкке, считавший клетку элементарным организмом, показал сложность строения протоплазмы. В последней четверти 19 в. был обнаружен ряд постоянных составных частей протоплазмы — органоидов: центросомы (1876, бельгийский учёный Э. ван Бенеден), митохондрии (1897—98, немецкий учёный К. Бенда, у животных; 1904, немецкий учёный Ф. Мевес, у растений), сетчатый аппарат, или комплекс Гольджи (1898, итальянский учёный К. Гольджи). Швейцарский учёный Ф. Мишер (1868) установил в ядрах клеток наличие нуклеиновой кислоты. Открыто кариокинетическое деление клеток у растений (1875, Э. Страсбургер), затем у животных (1878, русский учёный П. И. Перемежко; 1882, немецкий учёный В. Флемминг). Создана теория индивидуальности хромосом и установлено правило постоянства их числа (1885, австрийский учёный К. Рабль; 1887, немецкий учёный Т. Бовери). Открыто явление редукции числа хромосом при развитии половых клеток; установлено, что оплодотворение состоит в слиянии ядра яйцевой клетки с ядром сперматозоида (1875, немецкий зоолог О. Гертвиг, у животных; 1880—83, русский ботаник И. Н. Горожанкин, у растений). В 1898 русский цитолог С. Г. Навашин обнаружил у покрытосеменных растений двойное оплодотворение, заключающееся в том, что, помимо соединения ядра спермия с ядром яйцеклетки, ядро второго спермия соединяется с ядром клетки, дающей эндосперм. При размножении растений обнаружено чередование диплоидных (бесполых) и гаплоидных (половых) поколений.
Достигнуты
успехи в изучении физиологии
клетки. В 1882 И. И. Мечников открыл
явление фагоцитоза. Была обнаружена
к подробно исследована
В первые десятилетия 20 в. стали применять темнопольный конденсор, с помощью которого объекты под микроскопом исследовались при боковом освещении. Темнопольный микроскоп позволил изучать степень дисперсности и гидратации клеточных структур и обнаруживать некоторые структуры субмикроскопических размеров. Поляризационный микроскоп дал возможность определять ориентацию частиц в клеточных структурах. С 1903 развивается микроскопирование в ультрафиолетовых лучах, ставшее в дальнейшем важным методом исследования цитохимии клетки, в частности нуклеиновых кислот. Начинает применяться флюоресцентная микроскопия.
В 1941 появляется фазово-контрастный микроскоп, позволяющий различать бесцветные структуры, отличающиеся лишь оптической плотностью или толщиной.
Последние два метода оказались особенно ценными при изучении живых клеток. Разрабатываются новые методы цитохимического анализа, среди них — метод выявления дезоксирибонуклеиновой кислоты (немецкие учёные Р. Фёльген и Г. Розенбек, 1924). Создаются микроманипуляторы, с помощью которых можно производить над клетками разнообразные операции (инъекции в клетку веществ, извлечение и пересадку ядер, локальное повреждение клеточных структур и т.д.). Большое значение приобрела разработка метода культуры тканей вне организма, начало которому было положено в 1907 американским учёным Р. Гаррисоном. Интересные результаты были получены при сочетании этого метода с замедленной микрокиносъёмкой, что дало возможность видеть на экране медленные изменения в клетках, протекающие незаметно для глаза, ускоренными в десятки и сотни раз. В первые три десятилетия 20 в. усилия учёных направлены были на выяснение функциональной роли клеточных структур, открытых в последней четверти 19 в., в частности было установлено участие комплекса Гольджи в выработке секретов и др. веществ в гранулярной форме (советский учёный Д. Н. Насонов, 1923). Описаны частные органоиды специализированных клеток, опорные элементы в ряде клеток (Н.К. Кольцов, 1903—1911), исследованы структурные изменения при различной клеточной деятельности (секреция, сократительная функция, деление клеток, морфогенез структур и т.д.). В растительных клетках прослежено развитие вакуолярной системы, образование крахмала в пластидах (французский учёный А. Гийермон, 1911).
Установлена видовая специфичность числа и формы хромосом, что в дальнейшем было использовано для систематики растений и животных, а также для выяснения филогенетического родства в пределах более низких таксономических единиц (кариосистематика). Обнаружено, что в тканях имеются разные классы клеток, отличающихся кратным отношением размеров ядер (немецкий учёный В. Якоби, 1925). Кратное увеличение размера ядер сопровождается соответствующим увеличением (путём эндомитоза) числа хромосом (австрийский учёный Л. Гейтлер, 1941). Исследования действия агентов, нарушающих механизм деления и хромосомный аппарат клеток (проникающее излучение, колхицин, ацетонафтен, трипофлавин и др.), привели к разработке методов искусственного получения полиплоидных форм, что дало возможность вывести ряд ценных сортов культурных растений. С помощью реакции Фёльгена положительно решился спорный вопрос о наличии гомолога ядра, содержащего дезоксирибонуклеиновую кислоту у бактерий (советский учёный М. А. Пешков, 1939—1943, французский учёный В. Делапорт, 1939, английский учёный С. Робиноу, 1942) и сине-зелёных водорослей (советские учёные Ю. И. Полянский и Ю. К. Петрушевский, 1929). Наряду с мембранной теорией проницаемости, выдвигается фазовая теория, придающая большое значение в распределении веществ между клеткой и средой, растворению их и связыванию в протоплазме (советские учёные Д. Н. Насонов, В. Я. Александров, А. С. Трошин). Изучение реакции протоплазмы клеток на воздействие разнообразных физических и химических агентов привело к обнаружению явлений паранекроза и к разработке денатурационной теории повреждения и возбуждения (Д. Н. Насонов и В. Я. Александров, 1940), согласно которой в этих процессах ведущее значение имеют обратимые изменения в структуре белков протоплазмы. С помощью вновь разработанных цитохимических реакций на гистологических препаратах была установлена локализация в клетке ряда ферментов. Начиная с 1934 благодаря работам американских учёных Р. Уэнсли и М. Герр, использовавшим метод гомогенизации (размельчения) клеток и фракционного центрифугирования, началось извлечение из клеток отдельных компонентов — ядер, хлоропластов, митохондрий, микросом и изучение их химического и ферментативного состава. Однако существенные успехи в расшифровке функций клеточных структур достигнуты лишь в современный период развития цитологии — после 50-х гг.
Огромное
влияние на развитие цитологии
в 20 в. оказало переоткрытие
в 1900 г. законов Менделя. Изучение
процессов, протекающих в