Роль и значение цитологии в науке

Автор работы: Пользователь скрыл имя, 26 Декабря 2012 в 22:08, реферат

Описание работы

Цитология занимает центральное положение в ряду биологических дисциплин, так как клеточные структуры лежат в основе строения, функционирования и индивидуального развития всех живых существ, и, кроме того, она является составной частью гистологии животных, анатомии растений, протистологии и бактериологии.

Содержание работы

Введение……………………………………………………………………….
Цитология- наука о клетке………………………………………………..
Развитие науки цитологии………………………………………………...
Место цитологии среди других биологических дисциплин…………….
Значение цитологии в медицине………………………………………….
Заключение……………………………………………………………………
Литература……………………………………………………………………

Файлы: 1 файл

Мендот 8.doc

— 91.00 Кб (Скачать файл)

 Было также  обнаружено, что основные красители,  например гематоксилин, обладают  сродством к содержимому ядра, а кислотные красители, например  эозин, окрашивают цитоплазму; это  наблюдение послужило основой  для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных "органах" и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.

 Закон генетической  непрерывности. Фундаментальное  значение для дальнейшего развития  клеточной теории имела концепция  генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой "бластемной" жидкости, находящейся вне клеток.

  Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 г. Р. Вирхов сформулировал закон генетической непрерывности в афоризме "Omnis cellula e cellula" ("Каждая клетка из клетки"). Когда была установлена роль ядра в клеточном делении, В.Флемминг (1882) перефразировал этот афоризм, провозгласив: "Omnis nucleus e nucleo" ("Каждое ядро из ядра"). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца — хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предшествующей.

 В 1865 было  установлено, что мужская половая  клетка (сперматозоид, или спермий)  представляет собой полноценную,  хотя и высокоспециализированную  клетку, а спустя 10 лет О.Гертвиг  проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Эван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

 Представление  о том, что хромосомы сохраняют  свою идентичность и поддерживают  генетическую непрерывность от  одного поколения клеток к  другому, окончательно сформировалось  в 1885 (Рабль). Вскоре было установлено,  что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888).

Таким образом, еще до конца 19 в. было сделано два  важных заключения. Одно состояло в  том, что наследственность есть результат  генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое — что существует механизм передачи наследственных признаков, который находится в ядре, а точнее — в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

 Законы наследственности. Второй этап в развитии цитологии  как науки охватывает 1900-1935. Он  наступил после того, как в  1900 были вторично открыты основные законы наследственности, сформулированные Г.Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник "гибридный" раздел генетики — цитогенетика.

С 50-х гг. 20 в. цитология вступила в современный  этап своего развития. Разработка новых  методов исследования и успехи смежных  дисциплин дали толчок бурному развитию цитологии и привели к стиранию чётких границ между цитологией, биохимией, биофизикой и молекулярной биологией. Использование электронного микроскопа (его разрешающая способность достигает 2—4 , предел разрешения светового микроскопа около 2000) привело к созданию субмикроскопической морфологии клетки и приблизило визуальное изучение клеточных структур к макромолекулярному уровню. Были обнаружены неизвестные до этого детали строения ранее открытых клеточных органоидов и ядерных структур; открыты новые ультрамикроскопические компоненты клетки: плазматическая, или клеточная, мембрана, отграничивающая клетку от окружающей среды, эндоплазматический ретикулум (сеть), рибосомы (осуществляющие синтез белка), лизосомы (содержащие гидролитические ферменты), пероксисомы (содержащие ферменты каталазу и уриказу), микротрубочки и микрофиламенты (играющие роль в поддержании формы и в обеспечении подвижности клеточных структур); в растительных клетках обнаружены диктиосомы — элементы комплекса Гольджи. Наряду с общеклеточными структурами выявляются ультрамикроскопические элементы и особенности, присущие специализированным клеткам. С помощью электронной микроскопии показано особое значение мембранных структур в построении различных компонентов клетки. Субмикроскопические исследования дали возможность все известные клетки (и соответственно все организмы) разделить на 2 группы: эукариоты (тканевые клетки всех многоклеточных организмов и одноклеточные животные и растения) и прокариоты (бактерии, сине-зелёные водоросли, актиномицеты и риккетсии). Прокариоты — примитивные клетки — отличаются от эукариотов отсутствием типичного ядра, лишены ядрышка, ядерной оболочки, типичных хромосом, митохондрий, комплекса Гольджи.

 Усовершенствование  методов изоляции клеточных компонентов,  использование методов аналитической и динамической биохимии применительно к задачам цитологии (меченные радиоактивными изотопами предшественники, авторадиография, количественная цитохимия с использованием цитофотометрии, разработка цитохимических методик для электронной микроскопии, применение антител, меченных флуорохромами, для обнаружения под флуоресцентным микроскопом локализации индивидуальных белков; метод гибридизации на срезах и мазках радиоактивных ДНК и РНК для идентификации нуклеиновых кислот клетки и т.д.) привело к уточнению химической топографии клеток и расшифровке функционального значения и биохимической роли многих составных частей клетки. Это потребовало широкого объединения работ в области цитологии с работами по биохимии, биофизике и молекулярной биологии. Для изучения генетических функций клеток большое значение имело открытие содержания ДНК не только в ядре, но и в цитоплазматических элементах клетки — митохондриях, хлоропластах, а по некоторым данным, и в базальных тельцах. Для оценки роли ядерного и цитоплазматического генного аппарата в определении наследственных свойств клетки используется пересадка ядер и митохондрий. Гибридизация соматических клеток становится перспективным методом изучения генного состава отдельных хромосом. Установлено, что проникновение веществ в клетку и в клеточные органоиды осуществляется с помощью особых транспортных систем, обеспечивающих проницаемость биологических мембран. Электронно-микроскопические, биохимические и генетические исследования увеличили число сторонников гипотезы симбиотического происхождения митохондрий и хлоропластов, выдвинутой в конце 19 в.

Основные задачи современной цитологии — дальнейшее изучение микроскопических и субмикроскопических  структур и химической организации  клеток; функций клеточных структур и их взаимодействий; способов проникновения веществ в клетку, выделения их из клетки и роли мембран в этих процессах; реакций клеток на нервные и гуморальные стимулы макроорганизма и на стимулы окружающей среды; восприятия и проведения возбуждения; взаимодействия между клетками; реакций клеток на повреждающие воздействия; репараций повреждения и адаптации к факторам среды и повреждающим агентам; репродукции клеток и клеточных структур; преобразований клеток в процессе морфофизиологической специализации (дифференцировки); ядерного и цитоплазматического генетического аппарата клетки, его изменений при наследственных заболеваниях; взаимоотношений клеток с вирусами; превращений нормальных клеток в раковые (малигнизация); процессов поведения клеток; происхождения и эволюции клеточной системы.

Наряду с  решением теоретических вопросов цитологии  участвует в разрешении ряда важнейших  биологических, медицинских и с.-х. проблем. В зависимости от объектов и методов исследования развивается  ряд разделов цитологии: цитогенетика, кариосистематика, цитоэкология, радиационная цитология, онкологическая цитология, иммуноцитология и т.д.

  1. Место цитологии среди других биологических дисциплин

 Цитология  занимает центральное положение  в ряду биологических дисциплин,  так как клеточные структуры лежат в основе строения, функционирования и индивидуального развития всех живых существ, и, кроме того, она является составной частью гистологии животных, анатомии растений, протистологии и бактериологии.

 По мере  дальнейшего раскрытия тайн клетки возможности практического использования полученных данных будут неизмеримо возрастать, что позволит в будущем управлять процессами индивидуального развития и регенерацией, разрабатывать надежные рекомендации по вопросам профилактики и лечения самых разнообразных заболеваний, а также по вопросам преодоления тканевой несовместимости, лечения лучевых поражений.

Цитология относится  к фундаментальным разделам биологии, так как исследует и описывает  единственную единицу всего живого на Земле – клетку. Познание клетки имеет важное значение для развития множества других биологических наук, таких как физиология, генетика, молекулярная биология, эмбриология, биохимия и др., так как дает им как бы субстрат, материал для изучения отдельных свойств именно клеток: все функциональные отправления организмов имеют клеточную основу.

  1. Значение цитологии в медицине

 Огромное  значение современная цитология,  или биология клетки, имеет для  медицины, так как любое заболевание  человеческого организма своей  основой имеет патологию конкретных клеток или их групп, что важно для понимания развития болезни, для ее диагностики и для выбора методов лечения и профилактики заболевания.

 Практическая  отдача цитологии была всегда  очень значительна, начиная с  цитодиагностики заболеваний крови и опухолевого роста, разработки методов выведения ценных сортов сельскохозяйственных растений путем использования полиплоидов и т.д.

 

 

Заключение

  Итак, «Цитология – наука о клетке», имеет важное значение для развития биологии, медицины, сельского хозяйства действительно важно, так как изучение клетки – это неисчерпаемый источник как новых научных открытий, так и подтверждения или опровержения старых. Ведь именно изучение клетки дает нам наиболее полное представление о свойствах всего организма. Каждая клетка одновременно вбирает в себя все свойства целого организма (в виде генетического материала) и в то же время имеет только ему свойственные признаки и свойства (так как клетки различных органов имеют совершенно отличные друг от друга, присущие только им свойства, связанные с выполнением ими определенных функций).

 Положения  современной клеточной теории  таковы:

- клетка –  элементарная единица живого: вне  клеток нет жизни;

- клетки сходны  по строению и по основным  свойствам;

- клетка –  единая система, включающая множество закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл и органоидов;

- многоклеточный  организм представляет собой  новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических, а так же гуморальных и нервных факторов;

- клетки увеличиваются  в числе путем деления исходной  клетки после удвоения ее генетического материала (ДНК);

- клетки многоклеточных  организмов типопотентны, т.е. обладают  генетическими потенциями всех  клеток данного организма, равнозначны  по генетической информации, но  отличаются друг от друга разной  экспрессией (работой) разных генов, что приводит их к морфологическому и функциональному разнообразию – к дифференцировке.

 Перечисленные  свойства клеток позволяют им  одновременно сохранить наследственную  информацию и в то же время  выполнять строго определенные  функции. Разнообразие клеток и их содержимого (генетического материала) обеспечивает разнообразие всего живого на земле.

 

Литература

 Большая  Советская энциклопедия // http://dic.academic.ru.

 Заварзин  А.А. Биология клетки: общая цитология. / А.А. Заварзин, А.Д. Харазова, М.Н. Молитвин. – СПб.: Изд-во СПб университета, 1992.

 Кругосвет:  энциклопедия 

 Ченцов Ю.С.  Введение в клеточную биологию: учебник для вузов – 4-е изд., перераб. и доп. – М.: Академкнига, 2005. – 495 с.: илл.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Роль и значение цитологии в науке