Стратегия лучевой терапии злокачественных опухолей. Клинико-радиобиологические основы лучевого лечения опухолей.

Автор работы: Пользователь скрыл имя, 20 Декабря 2014 в 13:48, реферат

Описание работы

Современная онкология- мультидисциплинарная наука. Стратегия лечения определяется взаимодействием хирурга (онколога), лучевого терапевта и химиотерапевта.
В онкологической клинике применяют три основных варианта лечения больного: хирургический, лучевой и медикаментозный (химиотерапия).

Файлы: 1 файл

реферат по радиологии.docx.doc

— 123.00 Кб (Скачать файл)

Биологическое действие излучения определяется не только величиной суммарной дозы, но и временем, в течение которого она поглощается. Путем подбора оптимального соотношения доза — время в каждом конкретном случае можно добиться максимально возможного эффекта. Данный принцип реализуют путем дробления суммарной дозы на отдельные фракции (разовые дозы). При фракционированном облучении клетки опухоли облучаются в разные стадии роста и размножения, т.е. в периоды различной радиопоражаемости. При нем используется способность здоровых тканей более полно восстанавливать свою структуру и функцию, чем это происходит в опухоли. Следовательно, вторая задача заключается в выборе правильного режима фракционирования. Нужно определить разовую дозу, число фракций, интервал между ними и соответственно общую продолжительность лучевой терапии.

Наибольшее распространение в практике получил режим классического мелкого фракционирования. Опухоль облучают в дозе 1,8—2 Гр 5 раз в неделю до достижения намеченной суммарной дозы. Общая продолжительность лечения составляет около 1,5 мес. Режим применим для лечения большинства опухолей, обладающих высокой и умеренной радиочувствительностью.

При крупном фракционировании ежедневную дозу увеличивают до3—4 Гр, а облучение выполняют 3—4 раза в неделю. Такой режим предпочтительнее для радиорезистентных опухолей, а также для новообразований, клетки которых имеют высокую потенцию к восстановлению сублетальных повреждений. Однако при крупном фракционировании чаще, чем при мелком, наблюдаются лучевые осложнения, особенно в отдаленном периоде. С целью повышения эффективности лечения быстро пролиферирующих опухолей применяют мультифракционирование: облучение в дозе2 Гр проводят 2 раза в день с интервалом не менее 4—5 ч. Суммарная доза уменьшается на 10—15 %, а продолжительность курса — на 1—3 нед. Опухолевые клетки, особенно находящиеся в состоянии гипоксии, не успевают восстановиться после сублетальных и потенциально летальных повреждений.

Крупное фракционирование применяют, например, при лечении лимфом, мелкоклеточного рака легкого, метастазов опухоли в шейных лимфатических узлах.

При медленно растущих новообразованиях используют режим гиперфракционирования: ежедневную дозу облучения 2,4 Гр разбивают на 2 фракции по 1,2 Гр. Следовательно, облучение проводят 2 раза в день, но ежедневная доза несколько больше, чем при мелком фракционировании. Лучевые реакции выражены не резко, несмотря на увеличение суммарной дозы на 15-25%. Особым вариантом является так называемый расщепленный курс облучений. После подведения к опухоли половины суммарной дозы (обычно около 30 Гр) делают перерыв на 2—4 нед. За это время клетки здоровых тканей восстанавливаются лучше, чем опухолевые. Кроме того, в связи с уменьшением опухоли оксигенация ее клеток повышается.

При внутритканевом лучевом воздействии, когда в опухоль имплантируют радиоактивные источники, используют непрерывный режим облучения в течение нескольких дней или недель. Достоинством такого режима является воздействие радиации на все стадии клеточного цикла. Ведь известно, что клетки наиболее чувствительны к облучению в фазе митоза и несколько меньше в фазе синтеза, а в фазе покоя и в начале постсинтетического периода радиочувствительность клетки минимальна.

При дистанционном фракционированном облучении также пытались использовать неодинаковую чувствительность клеток в разные фазы цикла.

Для этого больному вводили химические препараты (5-фторурацил винкристин), которые искусственно задерживали клетки в фазе синтеза. Такое искусственное накопление в ткани клеток, находящихся в одной фазе клеточного цикла, называют синхронизацией цикла. Таким образом, применяют много вариантов дробления суммарной дозы, и их необходимо сравнивать на основе количественных показателей. Для оценки биологической эффективности различных режимов фракционирования Ф.Эллис предложил концепцию номинальной стандартной дозы(НСД). НСД — это суммарная доза за полный курс облучений, при которой не происходит существенного повреждения нормальной соединительной ткани.

Также предложены и могут быть получены из специальных таблиц такие факторы, как кумулятивный радиационный эффект (КРЭ) и отношение время — доза —фракционирование (ВДФ), для каждого сеанса облучения и для всего курса облучений.

Физические и химические средства радиомодификации

Эффективность лучевого воздействия может быть повышена путем усиления радиопоражаемости опухоли или ослабления лучевых реакций нормальных тканей. С этой целью используют ряд физических и химических факторов, которые называют радиомодифицирующими агентами. Успех лучевой терапии опухолей тесно связан с кислородным эффектом, о котором уже упоминалось ранее. Под кислородным эффектом понимают зависимость лучевых биологических реакций от снабжения клеток кислородом, а именно: снижение их радиочувствительности при уменьшении содержания кислорода. При облучении тяжелыми заряженными частицами или нейтронами кислородный эффект почти не играет роли, но для остальных видов ионизирующих излучений он весьма существен. Кислородный эффект можно использовать в лучевой терапии двумя путями: повысить оксигенацию опухоли или уменьшить содержание кислорода в здоровых тканях (вызвать их гипоксию). В первом случае повышается радиочувствительность опухоли, во втором — увеличивается устойчивость (радиорезистентность) нормальных тканей. С целью повышения оксигенации опухоли больного облучают в условиях повышенного давления кислорода, помещая его в барокамеру. Здоровые ткани содержат оптимальное количество кислорода, поэтому увеличение его содержания в плазме крови не приводит к повышению их радиочувствительности. Что же касается гипоксических клеток опухоли, то при этом происходит диффузия кислорода в эти клетки и радиочувствительность их повышается. Для технической реализации методики оксибарорадиотерапии необходимы барокамера и радиотерапевтический аппарат, так как кислород проявляет сенсибилизирующее действие только в момент лучевого воздействия. Оксибарорадиотерапия особенно эффективна при лечении опухолей головы и шеи.

Снижения радиочувствительности нормальных тканей добиваются, обеспечивая вдыхание пациентом во время облучения гипоксических смесей, содержащих около 10 % кислорода. Больной вдыхает смесь через обычную маску, соединенную с наркозным аппаратом. Состав смеси постоянно контролируют с помощью газоанализатора. Такую методику лечения называют гипоксирадиотерапией. В качестве радиомодифицирующих агентов применяют химические соединения, которые повышают чувствительность опухоли к излучению. К таковым относятся электроноакцепторные вещества, из которых на практике используют метронидазол и мизонидазол. Имитируя функцию кислорода — его сродство к электрону, эти соединения избирательно сенсибилизируют гипоксические опухолевые клетки, повышая их радиопоражаемость. К сожалению, оба препарата токсичны (особенно мизонидазол). Тем не менее уже прием метронидазола внутрь в дозе 6 г/м2 обеспечивает концентрацию его в крови, при которой отмечается радиосенсибилизирующий эффект. По возможности дополнительно осуществляют аппликацию тампона с метронидазолом на область опухоли. С целью защиты нормальных тканей используют производные индолилалкиламинов (мексамин) и меркаптоалкиламинов (цистамин).

Более перспективными модификаторами при лучевой терапии оказались искусственная кратковременная гипергликемия и гипертермия. Наиболее выраженный эффект получен при их сочетании: вначале проводят облучение, за которым следует глюкозная нагрузка, после чего выполняют гипертермию опухоли. Основными факторами повышения эффективности облучения при этом являются подавление кровотока, снижение внутриклеточного рН, нивелирование клеток по фазам клеточного цикла. Опухолевые клетки по сравнению с нормальными обладают способностью к интенсивному гликолизу, т.е. биологическому расщеплению глюкозы с образованием молочной кислоты. Нарушение микроциркуляции также способствует удержанию в опухоли молочной кислоты. Поскольку опухоль исключительно активно поглощает из крови глюкозу, введение ее в организм больного приводит к более быстрому накоплению глюкозы в опухоли — к временной гипергликемии опухоли. Для поддержания гипергликемии в течение 3 ч требуется 230—520 г глюкозы при среднем уровне гликемии 25 ммоль/л.

К числу агентов, потенцирующих радиационный эффект, относится и гипертермия. Первый международный симпозиум по данной проблеме состоялся в Вашингтоне в 1975 г. За прошедшие годы разработаны системы нагрева опухоли и контроля за ее температурой. Локальный нагрев осуществляют с помощью генераторов электромагнитного излучения в СВЧ-, УВЧ- и ВЧ-диапазонах. На практике для глубоко лежащих опухолей применяют излучение с частотой 3—16 МГц. Можно прогревать новообразования, находящиеся на любой глубине. Созданы антенны-излучатели и для внутриполостного нагревания (например, опухоли прямой кишки). Температуру опухоли поддерживают на уровне 42—44 °С в течение 1 ч. Термоконтроль осуществляют с помощью катетерных полупроводниковых датчиков или инвазивных термодатчиков-термисторов на базе инъекционной иглы. Нагреваемую при гипертермии поверхность кожи охлаждают с помощью специальных прокладок.

Самостоятельный терапевтический потенциал гипертермии и гипергликемии невелик. К тому же при СВЧ-гипертермии реакции несколько сильнее. Однако в комбинации с облучением достигается выраженный эффект, особенно при радиорезистентных опухолях, не окруженных толстой жировой прослойкой (во избежание ее перегрева). При сочетании облучения (в обычных условиях или в условиях вдыхания гипоксических газовых смесей) с кратковременной гипергликемией (2-3 ч) и локальной сверхчастотной гипертермии, а в случае необходимости дополняя этот комплекс оперативным вмешательством, удается добиться стойкого эффекта даже у больных, которые еще недавно считались инкурабельными. Сочетание различных радиомодифицирующих воздействий — так называемая полирадиомодификация — перспективный путь дальнейшего развития лучевой терапии злокачественных опухолей.

БИОЛОГИЧЕСКИЕ ОСНОВЫ ЛУЧЕВОЙ ТЕРАПИИ

В основе применения ИИ в ЛТ злокачественных опухолей лежат глубокие знания биологического действия ИИ на различные органы, ткани и опухоли, которое представляет собой чрезвычайно сложный процесс, сопровождающийся определенными морфологическими и функциональными изменениями облучаемой ткани. При этом отчетливо прослеживается сочетание регрессивных явлений с восстановительными, находящимися в тесной зависимости от поглощенной энергии и времени, прошедшего после облучения. Четкие представления об этих процессах послужили основой для успешного применения излучений в лечебных целях как средства, позволяющего уничтожить опухолевую ткань и подавить ее рост, в то же время избежать необратимых постлучевых изменений окружающих опухоль нормальных органов и тканей.

Биологическое действие ИИ

В биологическом действии ИИ первым звеном является поглощение энергии излучения с последующим взаимодействием его с веществом ткани, которое протекает очень короткое время - доли секунды. В результате такого взаимодействия в клетках тканей и органов развивается целая цепь биофизических, биохимических, функциональных и морфологических изменений, которые в зависимости от конкретных условий протекают в различные сроки - минуты, дни, годы. При взаимодействии излучений с веществом возникают ионизация и возбуждение атомов и молекул облучаемого вещества и образуется тепло. При облучении процессы ионизации и возбуждения возникают только вдоль пути ионизирующей частицы.

В результате ионизации атома или молекулы возникает два иона с положительным и отрицательным зарядом. Оба иона нестабильны, химически активны, имеют выраженную тенденцию к соединению с центральными молекулами, при возбуждении которых меняется электронная конфигурация молекулы, что может привести к разрыву ее молекулярных связей. Продукты расщепления прореагировавших молекул также оказываются химически активными и, в свою очередь, вступают в химические реакции с нейтральными молекулами. Ионизация молекул воды, которой в организме более 80%, ведет к ее расщеплению и образованию Н+, ОН, Н2О2, Н2, обладающих значительной химической активностью и вызывающих окисление растворимых в воде веществ.

Таким образом, первичные физические процессы - ионизация и возбуждение атомов и молекул - приводят к химической перестройке облученных молекул. В первичном механизме биологического действия различают прямое действие (изменения, возникающие в молекулах клеток в результате ионизации или возбуждения) и непрямое (объединяет все химические реакции, протекающие с химически активными, но не ионизированными продуктами диссоциации ионизированных молекул).

Процессы ионизации и возбуждения являются пусковыми механизмами, которые определяют все последующие изменения в облучаемых тканях. Возможность ионизации зависит от размеров молекулы: чем больше ее размеры, тем больше вероятность ее взаимодействия с ионизирующей частицей. Все наиболее важные молекулы имеют большой объем. Примером могут служить молекулы ДНК, которые принимают участие в передаче наследственности, в процессах размножения и регуляции обмена в клетке. Облучение приводит к разрыву молекул, нарушению структуры ДНК. В облученной клетке нарушаются процессы регуляции и деятельности ее отдельных составляющих (мембраны, митохондрии и др.). Гибель клеток, даже при облучении большими дозами, может растягиваться на продолжительное время. Различают два вида гибели клеток вследствие облучения: митотическая гибель (инактивация клетки вслед за облучением после первого или последующего митозов) и интерфазная гибель (гибель до вступления ее в фазу митоза).

Непрямое действие излучений вызывает менее грубые нарушения, часто обратимые, но они охватывают большее число молекул в объеме тканей, значительно превышающем размеры полей облучения. Примером непрямого действия может служить общая реакция организма, лейкопения, развивающаяся и в тех случаях, когда костный мозг исключен из зоны облучения.

Интенсивность реакций, связанных с прямым и непрямым механизмами действия ИИ, зависит помимо исходного состояния организма от ряда физических и химических факторов. К физическим факторам относятся доза и ее мощность - с их увеличением биологический эффект усиливается. Также биологический эффект зависит от качества излучения, которое характеризуется ЛПЭ и ЛПИ, так как эффект облучения обусловлен не только количеством поглощенной энергии, но и ее макро- и микрораспределением в тканях.

Из химических факторов, оказывающих влияние на биологический эффект, наиболее отчетливо влияние кислорода. В присутствие кислорода возникает большое количество химически активных радикалов и перекисей, усиливающих процессы окисления в облучаемых тканях. Продолжительность жизни первичных радикалов не превышает долей секунды, а вновь образованные окислители существуют длительное время. При этом могут возникать цепные реакции, а возникающие цепи тем длиннее, чем выше содержание кислорода. Кислород может вступать в реакцию с некоторыми ионизированными молекулами и способствовать их изменению, которое могло бы не проявиться в отсутствие кислорода. Увеличивая интенсивность первичных реакций, развивающихся под влиянием облучения, кислород повышает радиочувствительность клетки, причем повышение это наступает мгновенно вслед за увеличением содержания кислорода. Кислородный эффект наиболее выражен для излучений электромагнитной природы, он выше при фракционированном, чем при однократном облучении.

Информация о работе Стратегия лучевой терапии злокачественных опухолей. Клинико-радиобиологические основы лучевого лечения опухолей.