Физиология промежуточного мозга

Автор работы: Пользователь скрыл имя, 09 Ноября 2013 в 09:48, контрольная работа

Описание работы

Промежуточный мозг - diencephalons - занимает довольно значительный участок головного мозга с обширной полостью третьего желудочка. Впоследствии, однако, полость желудочка становится щелевидной.
Пластинка покрышки служит сводом для третьего желудочка, который у всех животных остается зачаточным, состоящим из эпителиальной пластинки - lamina epithelialis, - которая, срастаясь с мягкой мозговой оболочкой, формирует сосудистую покрышку третьего мозгового желудочка - tela chorioidea ventriculi tertii, - заключающую в себе сосудистое сплетение. Покрышка внедряется отростками в полость третьего желудочка, а через межжелудочковое отверстие проникает также в конечный мозг, где и переходит в сосудистое сплетение боковых мозговых желудочков, - образовавшиеся за счет пластинки покрышки конечного мозга.

Содержание работы

Введение
I. Развитие и анатомическое строение промежуточного мозга
II. Функции промежуточного мозга
1. Таламус
2. Гипоталамус
3. Эпифиз
4. Ретикулярная формация ствола мозга
III. Заключение
Библиографический список

Файлы: 1 файл

Физиология.docx

— 52.33 Кб (Скачать файл)

Агрессивно-оборонительное поведение. Агрессивные и оборонительные реакции были получены при раздражении различных зон гипоталамуса: передней и задней, вентромедиальной и латеральной (В. Гесс, 1928). Вероятно, это связано с тем, что имеются различные виды агрессивности, направленные на борьбу за самосохранение, лидерство в группе, территорию и др. Типичный симптомокомплекс этих реакций: яркое проявление отрицательных эмоций (гнев, ярость, страх), резкие вегетативные эрготропные сдвиги, попытки к нападению или бегству. Вместе с тем агрессивное поведение может быть без эмоционального возбуждения ("холодная атака") или сопровождаться положительной эмоцией. Перерезка ствола мозга ниже гипоталамуса ликвидирует агрессивное поведение. При осуществлении агрессивно-оборонительных реакций гипоталамус взаимодействует с центральным серым веществом среднего мозга. В этой структуре были обнаружены "нейроны агрессии" (Д. Адамс, 1968), которые через гипоталамус запускают реакции агрессии (борьба, драка) и не возбуждаются при других реакциях. При повреждении этих нейронов резко увеличивается порог электрического раздражения гипоталамуса для вызова реакции ярости. На агрессивное поведение выраженное стимулирующее влияние оказывают андрогены, особенно тестостерон (пороговая величина 1-2 мкг/л).

Перерезка ствола мозга сразу  выше гипоталамуса (У. Кеннон) показала, что у животных легко возникает агрессивное поведение с реакциями ярости и и вегетативными проявлениями симпатического характера. Однако они не направлены на конкретный объект ("ложная агрессия и ярость"). Эти данные свидетельствуют о важной роли вышележащих отделов мозга в формировании "осмысленного" агрессивного поведения. Большое значение в этом аспекте имеют некоторые структуры миндалевидного комплексависочной доли, например базолатеральные, раздражение которых резко активирует, и разрушение - тормозит агрессию. Ограничивающее действие на агрессивное поведение и соотношение его с морально-правовыми нормами оказывает лобная кора (в частности, орбитальные зоны).

Поведение "бодрствование - сон". Клиническое изучение больных с поражением гипоталамуса позволило сформулировать предположение (К. Экономо, 1918), что "центр сна" расположен в переднем гипоталамусе, а "центр бодрствования" - в заднем. Экспериментальные исследования с повреждением различных участков гипоталамуса (В. Гесс,. 1929-1954; С. Ренсон, 1979; Т.Н. Ониани, 1983) подтвердили мнение клиницистов. Электрическое разрушение преоптической области (тормозная система) гипоталамуса вызывало синхронизацию электроэнцефалограммы и поведенческий сон. В это время активирующая ретикулярная формация ствола реципрокно заторможена. Стимуляция заднего гипоталамуса, напротив, вызывала десинхронизацию ЭЭГ и пробуждение. Пробуждающий эффект заднего гипоталамуса увеличивается при возбуждении активирующей ретикулярной формации ствола мозга. Роль гипоталамуса не ограничивается только формированием механизмов сна и бодрствования. Выполняя роль внутренних часов, гипоталамус является водителем этого околосуточного ритма, а важнейшими структурами являются супрахиазматическое и, возможно, вентромедиальное ядра, разрушение которых нарушает периодичность многих циркадиальных ритмов. Регулируя околосуточные биоритмы, гипоталамус взаимодействует с эпифизом, с которым он имеет выраженные аксонные связи.

 

3. Эпифиз 

Эпифиз (шишковидная железа) - эндокринная железа, расположенная  в области промежуточного мозга, секреция основного гормона которой - мелатонина - зависит от времени  суток, причем максимальна ночью (до 80% суточного количества гормона). Гормоны  эпифиза в раннем онтогенезе тормозят половое созревание, они обеспечивают вместе с супрахиазматическим ядром гипоталамуса формирование суточных ритмов (биологические часы). Гормоны эпифиза оказывают выраженное нейрофизиологическое влияние: мелатонин, активируя ГАМК-рецепторы тормозных нейронов лимбической системы, усиливает процесс торможения и оказывает транквилизирующее влияние, участвует в регуляции пигментного обмена. В связи с этим эпифиз участвует в антистрессорной защите организма.

4. Ретикулярная  формация ствола мозга 

Структурные особенности  РФ. Ретикулярная формация образована совокупностью нейронов, расположенных в центральных отделах ствола мозга как диффузно, так и в виде ядер. Нейроны РФ имеют длинные маловетвлящиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т-образное ветвление: одна из ветвей аксона имеет нисходящее, а вторая - восходящее направление. Ветви нейронов под микроскопом образуют сеточку (ретикулум), с чем и связано название данной структуры мозга, предложенное О. Дейтерсом (1865). Нейроны РФ принимают импульсы от сенсорных путей, идущих от разных рецепторов. Это полимодальные нейроны, имеющие большие рецепторные поля. У нейронов РФ длительность латентного периода ответа на периферическую стимуляцию связаны с проведением возбуждения через многочисленные синапсы. Они имеют тоническую активность, равную

 

в покое 5-10 имп/с. Нейроны РФ обладают высокой чувствительностью к некоторым веществам крови (адреналину, СО2) и лекарствам (барбитуратам, аминазину и др.).

Ретикулярная формация имеет  связи с многочисленными структурами  ЦНС. Афферентные входы поступают  в РФ преимущественно от трех источников:

1) от температурных и  болевых рецепторов по волокнам  спиноретикулярного пути и тройничного нерва;

2) от сенсорной и частично  от других зон коры головного  мозга по кортико-ретикулярным путям импульсация поступает в ядра, дающие начало ретикулоспинальным путям, а также в ядра, которые проецируются на мозжечок;

3) от ядер мозжечка  по мозжечковоретикулярному пути.

Эфферентные выходы из РФ проецируются:

1) в спинной мозг по  латеральному и медиальному ретикулоспинальным  путям;

2) к верхним отделам  головного мозга (неспецифическим  ядрам таламуса, заднему гипоталамусу, полосатому телу) идут восходящие  пути, начинающиеся в ядрах продолговатого  мозга и моста;

3) к мозжечку идут пути, которые начинаются в латеральном  и парамедиальном ретикулярных  ядрах и в ядре покрышки  моста. Многообразие связей и структур РФ определяет ее многочисленные функции, которые можно объединить в три главные группы: соматические (двигательные), сенсорные (восходящее влияние на большой мозг) и вегетативные.

Соматические  функции РФ проявляются в её влиянии на двигательные ядра черепных нервов, моторные спинальные центры и активность мышечных рецепторов (мышечных веретен).

Ретикулярная формация среднего мозга осуществляет координацию  функций ядер глазодвигательных нервов (III, IV, VI), обеспечивая содружественные движения глаз в горизонтальном и вертикальном направлениях. В парамедиальной РФ продолговатого мозга имеются нейроны, управляющие горизонтальными движениями глаза. Эти же нейроны, но опосредованно, через нейроны РФ среднего мозга, управляют вертикальными движениями глаз. При двусторонних поражениях этих отделов РФ становится невозможным произвольное выполнение горизонтальных и вертикальных движений глаз.

Нисходящие влияния РФ на моторные спинальные центры. От ретикулярного  гигантоклеточного ядра (РГЯ) продолговатого мозга идет частично перекрещенный  латеральный ретикулоспинальный путь, волокна которого оканчиваются на вставочных нейронах спинного мозга. Через эти  интернейроны они возбуждают a - и g-нейроны мышц-сгибателей конечностей и реципрокно тормозят мышцы-разгибатели. В функциональном и топографическом плане латеральный ретикулоспинальный путь сходен с руброспинальным и кортикоспинальным путями; они образуют нисходящую латеральную флексорную (сгибательную) систему.

Вместе с тем раздражение  нейронов центральной части РГЯ  в эсперименте вызывает подавление всех спинальных рефлексов (сгибательных и разгибательных). По этому механизму осуществляется открытое И.М. Сеченовым (1862) центральное торможение рефлексов спинного мозга.

От ретикулярных ядер моста  идет неперекрещенный медиальный ретикулоспинальный путь, оканчивающийся на интернейронах спинного мозга. Через них осуществляется стимуляция a - и g-нейронов мышц-разгибателей осевой мускулатуры тела и через тормозные интернейроны тормозятся сгибатели. В функциональном и топографическом отношении этот путь сходен с вестибулоспинальными путями, они составляют медиальную нисходящую экстензорную (разгибательную) систему.

Восходящее влияние  РФ на большой мозг может быть как активирующим, так и тормозным. Импульсы ретикулярных нейронов продолговатого мозга, моста и среднего мозга поступают к неспецифическим ядрам таламуса и после переключения в них проецируются в различные области коры. Кроме таламуса восходящие импульсы поступают также в задний гипоталамус, полосатое тело, прозрачную перегородку.

Изучение активирующего  влияния восходящей РФ началось с  опыта по перерезке ствола мозга  между верхними и нижними буграми  четверохолмия - изолированный передний мозг (Ф. Бремер, 1935). У такого животного не нарушалось поступление в кору большого мозга возбуждения по важнейшим сенсорным системам - зрительной и обонтельной. Однако животное вело себя как спящее: был нарушен контакт с внешним миром, отсутствовала реакция на световые и обонятельные раздражители (спящий мозг по Бремеру).

На электроэнцефалограмме  у таких животных преобладал регулярный a-ритм, который свидетельствовал о  синхронной биоэлектрической активности различных структур коры большого мозга.

У человека a-ритм преобладает  при спокойном бодрствовании  и в дремотном состоянии. Такое  же состояние головного мозга  остается, если при перерезке ствола сохранить основные афферентные  пути, составляющие медиальную петлю (например, от лица по тройничному нерву), и  повредить только восходящие пути РФ.

Прямое доказательство влияния  РФ на бодрствующее состояние мозга  по восходящим путям получили Х. Мегун и Дж. Моруцци (1949) в хронических опытах с раздражением РФ через погруженные электроды у сонных животных. Стимуляция РФ вызывала пробуждение животного; возникала ориентировочная реакция, a-ритм и более медленные ритмы сменялись высокочастотным b-ритмом, что называется реакцией десинхронизации ЭЭГ и свидетельствует об активном состоянии коры головного мозга. Десинхронизация ЭЭГ считается характерным биоэлектрическим эффектом активирующего действия РФ и определяется в различных зонах коры, свидетельствуя о генирализованном влиянии РФ. В связи с этим важнейшей функцией восходящей РФ является регуляция цикла сон - бодрствование и уровня сознания.

Тормозное влияние РФ на большой мозг изучено значительно  хуже. В исследоваиях В. Гесса (1929), Дж. Моруцци (1941) было показано, что раздражением некоторых точек РФ ствола мозга можно перевести животное из бодрствующего состояния в сонное, при этом на ЭЭГ возникает реакция синхронизации биоритмов.

Вегетативные  функции ретикулярной формации. РФ поддерживает тонус вегетативных центров, интегрирует симпатические и парасимпатические влияния для реализации потребностей целостного организма, передает модулирующее влияние от гипоталамуса и мозжечка к органам, являясь важнейшей структурой жизненно важных центров продолговатого мозга - сердечно-сосудистого и дыхательного.

Сердечно-сосудистый центр. В 70-е годы XIXв. В работах В.Ф. Овсянникова и Диттмара, применивших методы перерезки и раздражения ствола мозга, была показана ведущая роль структур продолговатого мозга в сосудодвигательной регуляции и сформировано представление о сосудодвигательном центре. В 1946 г.Р. Александер предложил схему этого центра, состоящего из прессорной и депрессорной зон. Нейроны сосудодвигательного центра имеют выход на симпатические и парасимпатические центры, иннервирующие сердце. Регуляция сосудистого тонуса сопряжена с изменением сердечной деятельности, поэтому центр также называют сердечно-сосудистым.

Прессорная зона сосудодвигательного центра расположена на уровне и ниже верхнего угла ромбовидной ямки в заднебоковых отделах продолговатого мозга. Её раздражение приводит к повышению артериального давления и частоты сердечных сокращений.

Депрессорная зона центра расположена на уровне нижнего угла ромбовидной ямки в передних отделах  продолговатого мозга и моста. Перерезка  продолговатого мозга на этом уровне, отсоединяя прессорную зону от депрессорной, вызывает резкое снижение артериального давления (до 40 мм. рт. ст.). вместе с тем прессорная и депрессорная зоны в анатомическом и функциональном плане определены нечетко,. В каждой из них имеются как прессорные так и депрессорные точки. В связи с этим концепция вазомоторного центра имеет преимущественно функциональное содержание.

Дыхательный центр (бульбомостовой отдел). В 1822г. Флурансом было показано, что повреждение дна IV мозгового желудочка мозга на уровне нижнего угла ромбовидной ямки приводит к остановке дыхания (укол Флуранса). Более четко локализация дыхательного центра с использованием метода точечного раздражения и разрушения была изучена Н.А. Миславским (1885), который выделил в нем две структуры, ответственные за вдох и выдох. Последующие исследования, проведенные с использованием электрофизиологических методик (Р. Баумгарден, 1956), показали наличие в продолговатом мозге двух симметричных зон скопления дыхательных нейронов - дорсальной и вентральной. Дорсальная зона включает в себя большую часть ретикулярного гигантоклеточного ядра (РГЯ), состоит на 95% из нейронов вдоха, аксоны которых идут в составе ретикулоспинальных путей и иннервируют ядра диафрагмальных нервов (С3 - С4). Часть инспираторных нейронов находится в ретикулярных вентральных ядрах, их аксоны иннервируют мотонейроны ядер межреберных мышц (Th1 - Th11) и частично ядра диафрагмальных нервов. Импульсация в инспираторных нейронах начинается за 0,1 с до вдоха сначала в нейронах дорсальной, а затем и в нейронах вентральной зоны. Поэтому диафрагма начинает сокращаться раньше, чем наружные межреберные мышцы. Нейроны выдоха находятся преимущественно в вентральной зоне, включающей задние и верхние части РГЯ ретикулярное мелкоклеточное ядро, аксоны которых иннервируют мотонейроны внутренних межреберных и брюшных мышц. Импульсация в мотонейронах появляется за 0,1 с до выдоха, затем частота нарастает в течение выдоха и резко уменьшается в конце.

Кроме продолговатого мозга  в ретикулярной формации моста также  выделено две группы нейронов, имеющих  отношение к регуляции дыхания (Ф. Люмсден, 1923). Одна находится в верхней части моста и называется пневмотаксическим центром, ограничивающим длительность вдоха и повышающим частоту дыхания. Вторая группа нейронов находится в средней и нижней частях моста и называется апнейстическим центром. Эффект его действия заключается в постоянной стимуляции инспираторных нейронов, он способствует возникновению вдоха и удлиняет его.

Информация о работе Физиология промежуточного мозга