Курс лекций по "Физиологии"

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 17:10, курс лекций

Описание работы

Работа содержит курс лекций по дисциплине "Физиология"

Файлы: 1 файл

Лекции по норм.физиологии (1).doc

— 1,001.50 Кб (Скачать файл)

I (0) - в эритроцитах нет агглютиногенов, но в плазме содержатся агглютинины а и b.

II (А) -агглютиногены А и агглютинины b.                                    

III (В) - агглютиногены В и агглютинины а.

IV (АВ) - в эритроцитах агглютиногены А и В, агглютининов в плазме нет. В настоящее время Н-антиген. Агглютиногены А делятся на подтипы А1 и А2. Первый подтип обнаружено, что в эритроцитах I группы имеется слабый встречается у 80% людей и обладает более выраженными антигенными свойствами. Реакций при переливании между кровью этих подгрупп не происходит. Наследование группы крови осуществляется за счет генов А, В и О. В хромосомах человека содержится 2 из них. Гены А и В являются доминантными. Поэтому у родителей со II и III группой крови ребенок может иметь любую из 4-х групп.

У 46% европейцев кровь  первой группы, 42% - второй, 9% - третьей и 3% четвертой. В 1940 году К.Ландштейнер и И.Винер обнаружили в эритроцитах еще один  агглютиноген. Впервые он был найден в крови макак-резусов. Поэтому был назван ими резус-фактором. В отличие от антигенной системы АВО, где к агглютиногенами А и В имеются соответствующие агглютинины, агглютининов к резус-антигену в крови нет. Они вырабатываются в том случае, если резус-положительную кровь (содержащую резус-фактор) перелить реципиенту с резус-отрицательной кровью. При первом переливании резус несовместимой крови никакой трансфузионной реакции не будет. Однако в результате сенсибилизации организма реципиента, через 3-4 недели в его крови появятся резус-агглютинины. Они очень длительное время сохраняются. Поэтому при повторном переливании резус-положительной крови этому реципиенту произойдет агглютинация и гемолиз эритроцитов донорской крови. Другое отличие этих двух антигенных систем состоит в том, что резус-агглютинины имеют значительно меньшие размеры, чем а и b. Поэтому они могут проникать через плацентарный барьер. В последние недели беременности, во время родов и даже при абортах, эритроциты плода могут попадать в кровяное русло матери. Если плод имеет резус-положительную кровь, а мать резус-отрицательную, то попавшие в ее организм с эритроцитами плода резус-антигены вызовут образование резус-агглютининов. Титр резус-агглютининов нарастает медленно, поэтому при первой беременности особых осложнений не возникает. Если при у повторной беременности плод опять наследует резус-положительную кровь, то поступающие через плаценту резус-агглютинины матери вызовут агглютинацию и гемолиз эритроцитов плода. В легких случаях возникает анемия, гемолитическая желтуха новорожденных. В тяжелых эритробластоз плода и мертворожденность. Это явление называется резус-конфликтом. С целью его профилактики сразу после первых подобных родов вводят антирезус-глобулин. Он разрушает резус-положительные эритроциты, попавшие в кровь матери.

Существует 6 разновидностей резус-агглютиногенов: С, D, Е, с, d, е. Наиболее выраженные антигенные свойства у резус-агглютиногена D, Именно им определяется резус-принадлежность крови. Другие антигены этой системы практического значения не имеют.

В настоящее время  известно около 400 антигенных систем крови. Кроме систем АВО и Rh, известны систем MNSs, Р, Келла, Кидда и другие. Учитывая все антигены, число их комбинаций составляет около 3001млн. Но так как их антигенные свойства выражены слабо, для переливания крови их роль незначительна. Переливание несовместимой крови вызывает тяжелейшее осложнение - гемотрансфузионный шок. Он возникает вследствие того, что склеившиеся эритроциты закупоривают мелкие сосуды. Кровоток нарушается. Затем происходит их гемолиз и из эритроцитов донора в кровь поступают чужеродные белки. В результате резко падает кровяное давление, угнетается дыхание, сердечная деятельность, нарушается работа почек, центральной нервной системы. Переливание даже небольших количеств такой крови может закончиться смертью реципиента. В настоящее время допускается переливание только одно-групповой крови по системе АВО. Обязательно учитывается и ее резус-принадлежность. Поэтому перед каждым переливанием обязательно проводится определение группы и D-антигена крови донора и реципиента. Для определения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигенные свойства эритроцитов. Если ни в одной из сывороток не произошла агглютинация, следовательно, в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит, эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. Если во всех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. Желательно проводить исследование и с сывороткой IV группы. Более точно группу крови можно определить с помощью стандартных эритроцитов I, II, III и IV групп. Для этого их смешивают с сывороткой исследуемой крови и определяют содержание в ней агглютининов. Резус принадлежность крови определяют путем ее смешивания, с. сывороткой, содержащей резус-агглютинины.

Кроме этого, чтобы избежать ошибки при определении группы крови  и наличия D-антигена, применяют прямую пробу. Она необходима и для выявления  несовместимости крови по другим антигенными признакам. Прямую пробу  производят путем смешивания эритроцитов  донора с   сывороткой реципиента при 37°С. При отрицательных результатах первые порции крови переливаются дробно. Использовавшаяся раньше схема переливания крови разных групп, учитывающая содержание одноименных аглютинонов и агглютиногенов сейчас не применяется. Это связано с тем, что агглютинины донорской крови вызывают агглютинацию и гемолиз эритроцитов реципиента.

Лимфа

 Лимфа образуется  путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосудам, проходит лимфатические узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1.023 г/мм3. Вязкость 1,7. а рН около 9,0. Электролитный состав лимфы сходен с плазмой крови. Но в ней больше анионов хлора и бикарбоната Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2.000-20.000 мкл 2-20 * 109 Л. Имеется и небольшое количество других лейкоцитов. Из них больше всего моноцитов. Эритроцитов в норме нет. Благодаря наличию в ней тромбоцитов, фибрина, факторов свертывания лимфа способна образовывать тромб. Однако время ее свертывания больше, чем у крови.          Лимфа выполняет следующие функции:

1. Поддерживает постоянство  объема тканевой жидкости путем  удаления её избытка.

2. Перенос питательных  веществ, в основном жиров,  от органов пищеварения к тканям.

3. Возврат белка из  тканей в кровь.

4. Удаление продуктов  обмена из тканей.

5.защитная функция  обеспечивается  лимфоузлами, иммуноглобулинами,  лимфоцитами, макрофагами.

6. Участвует в механизмах  гуморальной регуляции, перенося  гормоны и другие ФАВ.

Защитная функция  крови. Иммунитет. Регуляция иммунного  ответа

 Организм защищается от болезнетворных агентов с помощью неспецифических и специфических защитных механизмов. Одним из них являются барьеры, т.е. кожа и эпителий различных органов (ЖКТ, легких, почек и т.д.). Кроме этого, в крови и лимфе имеются неспецифические клеточные и гуморальные механизмы. Эти механизмы способны обезвреживают даже факторы, с которыми организм раньше не сталкивался. К неспецифическим защитным механизмам крови относятся неспецифический клеточный и гуморальный иммунитет. Неспецифический клеточный иммунитет обусловлен фагоцитарной активностью гранулоцитов, моноцитов, лимфоцитов и тромбоцитов. Неспецифический гуморальный иммунитет связан с наличием в крови и других жидкостях организма естественных антител и ряда белковых систем. Раньше считали, что естественные антитела образуются в организме без контакта с антигеном. Однако сейчас установлено, что они не синтезируются самопроизвольно. Они возникают в результате контакта организма с облигатной кишечной микрофлорой, т.е. иммунной реакции. Имеется и несколько защитных белковых комплексов.

1. Лизоцим. Белок, обладающий  ферментативной активностью и  подавляющий развитие бактерии  и вирусов. Он содержится в  гранулах гранулоцитов и макрофагах  легких. При их разрушении выделяется  в окружающую среду. Лизоцим  имеется в слезной жидкости, слизи носа и кишечника.

2. Пропердин. Комплекс  белковоподобных веществ. Участвует  в лизисе бактерий.

3. Система комплемента.  Комплекс 1 1 белков плазмы, активирующийся  при иммунологических реакциях. Совместно с пропердином участвует  в лизисе бактерий.

4. Интерферон. Белок, вырабатываемый  многими клетками при поступлении  в них вирусов. Начинает выделяться  в кровь до появления иммунных  антител. Препятствует выработке  рибосомами пораженных клеток  вирусного белка.

5. Лейкины. Выделяются  лейкоцитами.

6. Плакины. Продукт  тромбоцитов. Те и другие разрушают  микроорганизмы. Специфические защитные механизмы включают специфический клеточный и гуморальный иммунитет. Специфический клеточный иммунитет обеспечивают Т-лимфоциты. Лимфоциты, образующиеся из стволовых лимфоидных клеток костного мозга, поступают в тимус и превращаются в иммунокомпетентные Т-лимфоциты. Затем эти лимфоциты переходят в кровь. При контакте с антигеном часть Т-лимфоцитов пролиферирует. Одна часть образовавшихся дочерних клеток связывается с антигеном (бактериями) и разрушает его. Для этой реакции антиген-антитело необходимо участие Т-хелперов. Другая часть дочерних клеток преобразуется в Т-клетки иммунологической памяти, которые запоминают структуру антигена. Они смеют большую продолжительность жизни. При повторном контакте Т-клеток памяти с этим антигеном они узнают его. Начинается их интенсивная пролиферация, с образованием большого количества Т-киллеров, а также Т-супрессоров. Т-супрессоры подавляют выработку антител В-лимфоцитами в этот момент. Этот вторичный клеточный иммунный ответ развивается примерно через 48 часов и называется иммунным ответом замедленного типа Так как раньше него возникает вторичный гуморальный иммунный ответ. Примером такой иммунной реакции является покраснение и отек кожи в результате контакта с некоторыми веществами, например краской урсолом.

Специфический гуморальный  иммунитет обеспечивается В-лимфоцитами. Они превращаются в иммунокомпетентные клетки в лимфатических узлах  тонкого кишечника, миндалинах, аппендиксе. Затем В-лимфоциты выходят в кровь и разносятся ею в селезенку и лимфатические узлы лимфатического русла. При первом контакте с антигеном они пролиферируют. Это явление называется начальной активацией или сенсибилизацией. Одна часть образующихся дочерних  клеток превращается в  клетки памяти и покидает центры размножения. Другая часть лимфоцитов оседает в  лимфатических узлах, превращаясь в плазматические клетки. Эти клетки вырабатывают гуморальные антитела,

поступающие в  кровь. Выработку иммуноглобулинов стимулируют Т-хелперы. Многие иммуноглобулины очень длительно сохраняются в крови. При повторном контакте антител с антигеном развивается быстрая и сильная иммунная реакция. Поэтому их называют иммунными реакциями немедленного типа. Они наблюдаются при гемотрансфузионном шоке, аллергии, бронхиальной астме и т.д.

В медицине, для формирования специфического иммунитета, используется вакцинация. При пересадке органов  наоборот с помощью иммунодепрессантов определенные звенья иммунитета подавляются. Это предотвращает отторжение трансплантата.                                                     

ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

 Кровообращение это  процесс движения крови по  сосудистому руслу, обеспечивающий  выполнение ею своих функций.  Физиологическую систему кровообращения составляют сердце и сосуды. Сердце обеспечивает энергетические потребности системы, а сосуды являются кровеносным руслом. В минуту сердце перекачивает около 5 литров крови, за год 260 тонн, а в течение жизни около 200.000 тонн крови. Суммарная длина сосудов около 100.000 км.

Первое научное исследование системы произвел У.Гарвей. В 1623 году он опубликовал работу "Анатомическое  исследование о движении сердца и  крови у животных". В 1653- году монах  М.Серве описал малый круг кровообращения, а 1628г. Мальпиги под микроскопом обнаружил капилляры. Большой круг кровообращения начинается аортой, отходящей от левого желудочка. По мере удаления от сердца она делится на артерии большого, среднего и малого калибра, артериолы, прекапилляры, капилляры. Капилляры соединяются в посткапиллярные венулы, затем вены. Заканчивается большой круг полыми венами, впадающими в правое предсердие. Малый круг кровообращения начинается легочной артерией, отходящей от правого желудочка. Она также разветвляется на артерии, артериолы и капилляры, пронизывающие легкие. Капилляры объединяются в венулы и легочные вены. Последние впадают в левое предсердие. Сердце - это полый мышечный орган. Его вес составляет 200—00 грамм или 1/200 массы тела. Стенка сердца образована тремя слоями: эндокардом, миокардом и эпикардом. Наибольшую толщину 10-15 мм она имеет* в области левого желудочка. Толщина стенки правого - 5-8 мм, а предсердий 2-3 мм. Миокард состоит из мышечных клеток 3-х типов: сократительных и атипических. Большую часть составляют сократительные кардиомиоциты. Сердце разделено перегородками на 4 камеры: 2 предсердия и 2 желудочка. Предсердия соединяются с желудочками посредством атриовентрикулярных отверстий. В них находятся створчатые атриовентрикулярные клапаны. Правый клапан трехстворчатый (трикуспидальный), а левый двухстворчатый (митральный). К створкам клапанов присочиняются сухожильные нити. Другим концом эти нити соединены сосочковыми (папиллярными) мышцами. В начале систолы желудочков эти мышцы сокращаются и нити натягиваются. Благодаря этому не происходит выворота створок клапанов в полость предсердий и обратного движения крови регургитации. В местах выхода аорты, и лёгочной артерии из желудочков расположены аортальный и пульмональный клапаны. Они имеют вид карманов а форме полумесяцев. Поэтому их называют полулунными. Функцией клапанного аппарата сердца является обеспечение одностороннего тока крови по кругам кровообращения. В клинике функция клапанного аппарата исследуется такими косвенными методами, как аускультация, фонокардиографня, рентгенография, эхокардиография позволяет визуально наблюдать за деятельностью клапанов.

Информация о работе Курс лекций по "Физиологии"