Автор работы: Пользователь скрыл имя, 06 Января 2013 в 10:30, реферат
Основным целевым принципом функционирования всех систем организма является поддержание его биологической целостности. На клеточном уровне этот процесс реализуется за счет регуляторного влияния эфферентных сигналов, поддерживающих сложное равновесное состояние между интегративными физиологическими процессами: пролиферацией, дифференцировкой и физиологической клеточной гибелью, или апоптозом.
Введение 3
История исследования апоптоза 4
Проявление апоптоза 8
Стадии апоптоза 9
Генетический контроль. 15
Причины апоптоза. 18
Заболевания, связанные с нарушением апоптоза 22
Старение и апоптоз 22
Апоптоз как форма гибели клеток 23
Заключение 25
Список использованной литературы 26
4. Альтруистический суицид клеток.
Смерть клеток может играть биологически полезную роль в элиминации тех клеток, выживание которых вредно для организма в целом: например, клеток-мутантов, клеток, пораженных вирусом. Проникающая радиация вызывает апоптоз в популяции пролиферирующих клеток эпителия крипт кишечника, в не пролиферирующих клетках лимфоидных органов, где лимфатические клетки, превратившиеся после облучения в мутанты, могут стать причиной аутоиммунных заболеваний. Апоптоз стимулируется химическими препаратами, применяемыми при лечении опухолевых заболеваний; уничтожение пораженных вирусами клеток путем апоптоза обеспечивает минимальное повреждение тканей по сравнению с гибелью клеток некротическим путем.
5. Клеточная смерть вызванная минимальным повреждением.
Этот тип клеточной смерти возникает при слабом воздействии на клетки тех агентов, которые могут вызвать некроз. Данный тип апоптоза определяется силой воздействия, а не его природой. Так, нагревание клеток в культуре тканей до температуры +43° - +44° С в течение тридцати минут вызывает апоптоз отдельных клеток, а гипертермия до +46° - +47° С приводит к массированному некрозу.
Апоптоз чаще всего дифференцируется морфологически. Биохимическая дифференцировка апоптоза in vivo пока еще затруднительна. Однако in vitro процессы апоптоза изучены достаточно подробно. Опуская некоторые биохимические детали, следует обратить внимание на следующее. В основе апоптоза лежит изменение ионного состава цитоплазмы клетки, приводящее к уменьшению содержания в ней внутриклеточного кальция. Этот процесс связан с нарушением функции потенциал-зависимых кальциевых каналов и сопряженного с этим процессом взаимодействия цАМФ и кальмодулина. Конечным этапом этого процесса являются изменения содержания макроэргических фосфорных соединений и снижение концентрации внутриклеточного кальция в клетке. Апоптоз начинается с деполяризации клеточных мембран, что и ведет к изменению проницаемости потенциалзависимых кальциевых каналов.
При реализации апоптоза условно можно выделить четыре стадии.
Инициация —> Программирование —> Реализация программы —> Удаление погибшей клетки
1.Стадия инициации
На этой стадии информационные сигналы рецептируются клеткой. Патогенный агент либо сам является сигналом, либо обусловливает генерацию сигнала в клетке и его проведение к внутриклеточным регулятор-ным структурам и молекулам.
Инициирующие апоптоз стимулы могут быть трансмембранными или внутриклеточными.
• Трансмембранные сигналы подразделяют на отрицательные, положительные и смешанные.
- Отрицательные сигналы: отсутствие или прекращение воздействия на клетку факторов роста, цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток.
В норме действие названных выше групп БАВ на мембранные рецепторы обеспечивает подавление программы гибели клеток и нормальную их жизнедеятельность. Напротив, их отсутствие или снижение эффектов «освобождает» программу апоптоза. Так, для нормальной жизнедеятельности ряда нейронов необходимо постоянное наличие нейротрофических факторов. Их устранение или снижение эффектов на нервные клетки может привести к включению программы смерти нейрона.
- Положительные сигналы в итоге генерируют запуск программы апоптоза. Так, связывание ФИО (FasL) с его мембранным рецептором CD95 (Fas) активирует программу смерти клетки.
- Смешанные сигналы являются комбинацией воздействий сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, простимулированные митогеном, но не проконтактировавшие с чужеродным Аг. Погибают и те лимфоциты, на которые воздействовал Аг, но не получившие других сигналов, например митогенного или от HLA.
• Среди внутриклеточных стимулов апоптоза зарегистрированы избыток Н+, свободные радикалы липидов и других веществ, повышенная температура, внутриклеточные вирусы и гормоны, реализующие свой эффект через ядерные рецепторы (например, глюкокортикоиды).
Апоптоз: стадия инициации.
2.Стадия программирования
Стадия программирования (контроля и интеграции процессов апоптоза) представлена на рисунке.
На этой стадии специализированные белки либо реализуют сигнал к апоптозу путём активации исполнительной программы (её эффекторами являются цистеиновые протеазы — каспазы и эндонуклеазы), либо блокируют потенциально летальный сигнал.
Выделяют два (не исключающих друг друга) варианта реализации стадий программирования:
1) путём прямой активации эффекторных каспаз и эндонуклеаз (минуя геном клетки)
2) опосредованной через геном передачи сигнала на эффекторные каспазы и эндонуклеазы.
Прямая передача сигнала осуществляется через адапторные белки, гранзимы и цитохром С.
• Адапторные белки. В качестве адапторного белка выступает, например, каспаза-8. Так реализуют своё действие цитокины Т-лимфоцитов-киллеров в отношении чужеродных клеток, ФНО и другие лиганды CD95.
• Цитохром С. Выделяясь из митохондрий, цитохром С вместе с белком Apaf-1 и каспазой-9 формирует комплекс активации (апоптосому) эффекторных каспаз. Каспаза-8 и каспаза-9 активируют эффекторные каспазы (например, каспазу-3), которые участвуют в протеолизе белков.
• Гранзимы. Эти протеазы выделяют цитотоксические Т-лимфоциты, протеазы проникают в клетки-мишени через цитоплазматические поры, предварительно сформированные перфоринами. Гранзимы активируют аспартатспецифи-ческие цистеиновые протеазы клетки-мишени, подвергающейся апоптозу.
Прямая передача сигнала наблюдается обычно в безъядерных клетках, например в эритроцитах.
Апоптоз: стадия программирования.
Опосредованная передача сигнала подразумевает репрессию генов, кодирующих ингибиторы апоптоза, и активацию генов, кодирующих промоторы апоптоза.
Белки-ингибиторы апоптоза (например, продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, тем самым уменьшая вероятность выхода в цитозоль одного из пусковых факторов апоптоза — цитохрома С).
Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Box, антионкогенами Rb или /т53) активируют эффекторные кас-пазы и эндонуклеазы.
3.Стадия реализации программы
Стадия реализации программы апоптоза (исполнительная, эффекторная) состоит в собственно гибели клетки, осуществляемой посредством активации протеолитического и нуклеолитического каскадов.
Апоптоз: стадия реализации программы.
Непосредственными исполнителями процесса «умертвления» клетки являются Ca2+,Mg2+ -зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (подвергают протеолитическому расщеплению различные белки, в том числе белки цитоскелета, ядра, регуляторные белки и ферменты).
В результате разрушения белков и хроматина в процессе апоптоза клетка подвергается деструкции. В ней формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы — апоптозные тельца.
Существует несколько путей реализации программы ПКС.
Среди них важное место занимает путь, опосредованный физиологическими индукторами, действие которых реализуется через клеточные рецепторы, специально предназначенные для включения программы апоптоза. Этот путь передачи сигнала ПКС схематически можно изобразить следующим образом: индукторы ’ рецепторы ’ адаптеры ’ каспазы первого эшелона ’ регуляторы ’ каспазы второго эшелона. Так, рецептор, обозначаемый Fas, взаимодействуя с соответствующим лигандом (лигандом FasL), трансмембранным белком Т-киллера, активируется и запускает программу смерти клетки, инфицированной вирусом. Тем же путем при взаимодействии с лигандом FasL на поверхности ТН-1-лимфоцитов или с антителом к Fas-рецептору погибают ставшие ненужными выздоровевшему организму В-лимфоциты, продуценты антител, несущие Fas-рецептор. FasL– лиганд, относящийся к многочисленному семейству фактора некроза опухолей TNF. Это семейство гомотримерных лигандов, кроме FasL и TNFa , включает TNFb (лимфотоксин).
Fas – член семейства рецепторов TNF. Все они представлены трансмембранными белками, которые внеклеточными участками взаимодействуют с тримерами лигандов-индукторов . Взаимодействие рецептора и лиганда приводит к образованию кластеров рецепторных молекул и связыванию их внутриклеточных участков с адаптерами. Адаптер, связавшись с рецептором, вступает во взаимодействие с эффекторами, пока еще неактивными предшественниками протеаз из семейства каспаз первого эшелона (инициирующих каспаз).
Взаимодействие адаптера с рецептором и эффектором осуществляется через гомофильные белок-белковые взаимодействия небольших доменов: DD (death domain – домен смерти), DED (death-effector domain – домен эффектора смерти), CARD (– домен активации и рекрутирования каспазы). Все они имеют сходную структуру, содержат по шесть a-спиральных участков. Домены DD(домен смерти) участвуют во взаимодействии рецептора Fas c адаптером FADD (Fas-associated DD-protein). Домены DED участвуют во взаимодействии адаптера FADD с прокаспазами 8 и 10.
Зависимый от Fas-рецептора апоптоз клетки-мишени при действии цитотоксического Т-лимфоцита (Т-киллера)
Наиболее подробно охарактеризована прокаспаза-8, рекрутируемая рецептором Fas через адаптeр FADD. Образуются агрегаты FasL – Fas – FADD – прокаспаза-8. Подобные агрегаты, в которых происходит активация каспаз, названы апоптосомами , апоптозными шаперонами , или сигнальными комплексами, индуцирующими смерть.
Прокаспазы обладают незначительной протеолитической активностью, составляющей 1–2% активности зрелой каспазы. Будучи в мономерной форме, прокаспазы, концентрация которых в клетке ничтожна, находятся в латентном состоянии. Предполагается, что пространственное сближение молекул прокaспаз при их агрегации ведет к образованию активных каспаз через механизм протеолитического само- и перекрестного расщепления (ауто- или транс-процессинга)]. В результате от прокаспазы (молекулярная масса 30–50 кДа) отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (~20 кДа) и малую (~10 кДа) субъединицы (рис. 3). Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими участками, действующими независимо друг от друга. Таким образом прокаспаза-8 активируется и высвобождается в цитоплазму в виде каспазы-8. Существуют другие пути активации каспазы-8 – с участием рецепторов TNFR1 и DR3.
На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. К ним относятся белки Bcl-2 (ингибиторы апоптоза: A1, Bcl-2, Bcl-W, Bcl-XL, Brag-1, Mcl-1 и NR13) и Bax (промоторы апоптоза: Bad, Bak, Bax, Bcl-XS, Bid, Bik, Bim, Hrk, Mtd). Эти белки эволюционно консервативны: гомолог Bcl-2 обнаружен даже у губок, у которых апоптоз необходим для морфогенеза .
Каспаза-8 активирует каспазу второго эшелона (эффекторную каспазу): путем протеолиза из прокаспазы-3 образуется каспаза-3, после чего процесс, запущенный программой смерти, оказывается необратимым.
Каспаза-3 способна в дальнейшем к самостоятельной активации (автокатализу или автопроцессингу), активирует ряд других протеаз семейства каспаз, активирует фактор фрагментации ДНК, ведет к необратимому распаду ДНК на нуклеосомальные фрагменты. Так запускается каскад протеолитических ферментов,осуществляющих апоптоз.
Второй путь реализации программы ПКС.
В клетках, подвергшихся воздействию индуктора апоптоза, резко снижается мембранный потенциал (Dy)митохондрий . Падение Dy обусловлено увеличением проницаемости внутренней мембраны митохондрий вследствие образования гигантских пор . Разнообразны факторы, вызывающие раскрытие пор . К ним относятся истощение клеток восстановленным глутатионом, NAD(P)H, ATP и ADP, образование активных форм кислорода, разобщение окислительного фосфорелирования протонофорными соединениями, увеличение содержания Ca2+ в цитоплазме. Образование пор в митохондриях можно вызвать церамидом, NO, каспазами, амфипатическими пептидами, жирными кислотами . Поры имеют диаметр 2,9 нм, позволяющий пересекать мембрану веществам с молекулярной массой 1,5 кДа и ниже. Следствием раскрытия поры является набухание митохондриального матрикса, разрыв наружной мембраны митохондрий и высвобождение растворимых белков межмембранного объема . Среди этих белков – ряд апоптогенных факторов: цитохром с , прокаспазы 2, 3 и 9 , белок AIF (apoptosis inducing factor), представляющий собой флавопротеин с молекулярной массой 57 кДа
Образование гигантских пор не является единственным механизмом выхода межмембранных белков митохондрий в цитоплазму. Предполагается , что разрыв наружной мембраны митохондрий может быть вызван гиперполяризацией внутренней мембраны. Возможен и альтернативный механизм, без разрыва мембраны, – раскрытие гигантского белкового канала в самой наружной мембране, способного пропускать цитохром с и другие белки из межмембранного пространства .
Высвобождаемый из митохондрий цитохром с вместе с цитоплазматическим фактором APAF-1 (apoptosis protease activating factor-1) участвует в активации каспазы-9 .
APAF-1 – белок с молекулярной массой 130 кДа, содержащий CARD-домен (caspase activation and recruitment domain) образует комплекс с прокаспазой-9 в присутствии цитохрома с и dATP или АТР. Из этих субъединиц собираются жесткие, симметричные структуры, наподобие веера или пропеллера .APAF-1 играет роль арматуры, на которой происходит аутокаталитический процессинг каспазы-9 . Предполагается, что в результате зависимого от гидролиза dATP (или АТР) конформационного изменения APAF-1 приобретает способность связывать цитохром с (рис. 5). Связав цитохром с, APAF-1 претерпевает дальнейшее конформационное изменение, способствующее его олигомеризации и открывающее доступ CARD-домена APAF-1 для прокаспазы-9, которая тоже содержит CARD-домен. Так образуется конструкция, называемая тоже апоптосомой, с молекулярной массой > 1,3 млн дальтон, в составе которой – не менее 8 субъединиц APAF-1 . Благодаря гомофильному CARD-CARD-взаимодействию с APAF-1 в эквимолярном соотношении связывается прокаспаза-9, а затем прокаспаза-9 связывает прокаспазу-3. Пространственное сближение молекул прокаспазы-9 на мультимерной арматуре из APAF-1-цитохром-с-комплексов, по-видимому, приводит к межмолекулярному протеолитическому процессингу прокаспазы-9 с образованием активной каспазы-9. Зрелая каспаза-9 затем расщепляет и активирует прокаспазу-3.