Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 16:03, контрольная работа
В 21 веке ни для кого не секрет, что такое мышца. Но так было не всегда. В древние времена, ученых и лекарей очень интересовали вопросы о теле человека. Из чего мы состоим, для чего нужны те или иные органы, каковы их функции, как их лечить и т.д.
Методом исследований человеку удалось разгадать истину, а так же далеко продыинуться в медицине.
Просмотрим сведения истории медицины: (приложение №стр)
"Первые упоминания в истории о изучении тела человека, принадлежат Китаю, Индии, Египту, Греции. Именно эти страны славились трактатами о медицине, о строении тела, о поддержании его здоровья, лечении недугов, а так же погребении.
Введение…………………………….
Теоретическая глава…………………….
- Исторические предпосылки изучения мышц…….
-Строение мышц. Мышца как орган (анатомия)…………………………
-Физиология мышц. Классификация мышечных волокон……………….
Возрастные особенности реакций мышц на нагрузку…………………..
-Механизмы мышечного сокращения……………………………………
-Масса и сила мышц в различные возрастные периоды………………….
-Работа мышц, виды работы……………………………………….
-Энергетическое и вегетативное обеспечение мышечной работы…….
Библиографический список…………………………
Мышечные волокна имеют диаметр от 10 до 100 мкм и длину от 5 до 400 мм (в зависимости от длины мышцы). В каждом мышечном волокне содержится до 1000 и более сократительных элементов миофибрилл, толщиной 1-3 мкм. Каждая миофибрилла состоит из множества параллельно лежащих толстых и тонких нитей - миофиламентов. Толстые нити состоят из молекул белка миозина, а тонкие - из белка актина.
Расположение миозиновых и тонких актиновых белковых нитей строга упорядочено (рис.4.1). Пучок лежащих в середине саркомера нитей миозина выглядит в световом микроскопе как темная полоска. Благодаря свойству двойного лучепреломления в поляризованном свете (то есть анизотропии) она называется А-диском. По обе стороны от А-диска находятся участки, которые содержат только тонкие нити актина и поэтому выглядят светлыми. Эти изотропные J-диски тянутся до Z-пластин. Благодаря такому периодическому чередованию светлых и темных полос миофибриллы скелетной мышцы выглядят исчерченными (поперечно - полосатыми). Если мышца расслаблена, то в средней части А-диска различается менее плотная Н-зона, состоящая только из толстых миофиламентов. Н-зона не просматривается во время сокращения мышцы. По середине J-диска проходит темная полоска - это Z линия. Участок миофибриллы между двумя Z линиями называется саркомером.
Схема саркомера мышечного волокна и взаимного расположения толстых миозиновых и тонких актиновых миофиламентов.
Z - линии, разделяющие два соседних саркомера; J - изотропный диск; А - анизотропный диск; Н - участок с уменьшенной анизотропностью
Механизмы сокращения мышечного волокна. В покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены к актиновым миофиламентам.
При сокращении мышцы длина А-дисков не меняется, J - диски укорачиваются, а Н-зона А-дисков может исчезать (рис.4.3). Эти данные явились основой для создания теории, объясняющей сокращение мышцы механизмом скольжения (теорией скольжения) тонких актиновых миофиламентов вдоль толстых миозиновых. В результате этого миозиновые миофиламенты втягиваются между окружающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.
Молекулярный механизм сокращения
мышечного волокна состоит в
том, что возникающий в области
концевой пластинки потенциал действия
распространяется по системе поперечных
трубочек вглубь волокна, вызывает деполяризацию
мембран цистерн
Схема сокращения мышцы
А. Поперечные мостики между
актином и миозином разомкнуты. Мышца
находится в расслабленном
Схема временной последовательности развития возбуждения и сокращения мышцы
При возбуждении волокна Са+2 выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са молекула тропонина изменяет свою форму таким образом, что выталкивает тропомиозин в желобок между двумя нитями актина, освобождая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают "гребковые" движения в сторону центра саркомера происходит "втягивание" актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.
Источником энергии для сокращения мышечных волокон служит АТФ.
При однократном движении поперечных мостиков вдоль актиновых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического сокращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение головок миозина может втянуть нити актина вдоль миозиновых и совершить требуемое укорочение целой мышцы. Напряжение, развиваемое мышечным волокном, зависит от числа одновременно замкнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорости укорочения мышцы число одновременно прикрепленных поперечных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличением скорости ее укорочения.
Поскольку возврат ионов кальция в цистерны саркоплазматического ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.
Регуляция силы сокращения
мышц. Для регуляции величины напряжения
мышцы центральная нервная
1. Регуляция числа активных
ДЕ. Чем больше число ДЕ мышцы
включается в работу, тем большее
напряжение она развивает. При
необходимости развития
Таким образом, первый механизм увеличения силы сокращения состоит в том, что при необходимости повысить величину напряжения мышцы в работу вовлекается большее количество ДЕ. Последовательность включения разных по морфофункциональным признакам ДЕ определяется интенсивностью центральных возбуждающих влияний и порогом возбудимости спинальных двигательных нейронов.
2. Регуляция частоты импульсации мотонейронов. При слабых сокращениях скелетных мышц импульсация мотонейронов составляет 5 - 10 имп/с. Для каждой отдельной ДЕ чем выше (до определенного предела) частота возбуждающих импульсов, тем больше сила сокращения ее мышечных волокон и тем больше ее вклад в развиваемое всей мышцей усилие. С увеличением частоты раздражения мотонейронов все большее количество ДЕ начинает работать в режиме гладкого тетануса, увеличивая тем самым свою силу по сравнению с одиночными сокращениями в 2-3 раза. В реальных условиях мышечной деятельности человека большая часть ДЕ активируется в диапазоне от 0 до 50% МПС. Лишь около 10% ДЕ вовлекаются с дальнейшим возрастанием силы сокращения. Следовательно, при увеличении силы сокращения более 50% от максимальной - основное значение, а в диапазоне сил от 75 до 100% МПС - даже исключительное, принадлежит росту частоты импульсации двигательных нейронов.
3. Синхронизация активности
различных ДЕ во времени. При
сокращении мышцы всегда
Чем большее количество ДЕ работает синхронно, тем большую силу развивает мышца.
Синхронизация активности ДЕ играет важную роль в начале любого сокращения и при необходимости выполнения мощных, быстрых сокращений (прыжки, метания и т.п.). Чем больше совпадают периоды сокращения разных ДЕ, тем с большей скоростью нарастает напряжения всей мышцы и тем большей величины достигает амплитуда ее сокращения.
Функциональные особенности гладких мышц
Гладкие мышцы находятся
в стенках внутренних органов
и кровеносных сосудов. Регуляция
их тонуса и сократительной активности
осуществляется эфферентными волокнами
симпатической и
Сократительный аппарат гладких мышц, как и скелетных, состоит из толстых миозиновых и тонких актиновых нитей. Вследствие их нерегулярного распределения клетки гладких мышц не имеют характерной для скелетной и сердечной мышцы поперечной исчерченности. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм и толщину 2-10 мкм. Они отделены друг от друга узкими щелями (60-150 нм). Возбуждение электротонически распространяется по мышце от клетки к клетке через особые плотные контакты (нексусы) между плазматическими мембранами соседних клеток.
Волокна гладких мышц сокращаются в результате относительного скольжения миозиновых и актиновых нитей, но скорость их сокращения и скорость расщепления АТФ в 100-1000 раз меньше, чем в скелетных мышцах. Поэтому гладкие мышцы хорошо приспособлены к длительному тоническому сокращению без развития утомления.
Гладкие мышцы, обладающие спонтанной
активностью, способны сокращаться
и при отсутствии прямых возбуждающих
нервных и гуморальных
Спонтанная активность гладкомышечных клеток связана и с их растяжением, вызывающим деполяризацию мембраны мышечного волокна, возникновение серии распространяющихся потенциалов действия, с последующим сокращением клетки.
Гладкие мышцы, не обладающие спонтанной активностью сокращаются под влиянием импульсов вегетативной нервной системы. Так, в отличие от мышц кишечника, мышечные клетки артерий, семенных протоков и радужки обладают слабой спонтанной активностью, или вообще не проявляют ее. Отдельные нервные импульсы не способны вызвать пороговую деполяризацию таких клеток и их сокращение. Потенциал действия волокна с последующим сокращением возникает лишь при поступлении к нему серии импульсов с частотой 1 имп/с и выше. В гладких мышцах, не обладающих спонтанной активностью возбуждение также передается от одной клетки к последующим через плотные контакты их мембран (нексусы).
Подобно скелетной и сердечной
мышцам гладкие мышцы расслабляются,
если концентрация ионов кальция
снижается ниже 10-8 моль/л. Однако в
связи со слаборазвитым
(http://www.diplomservis.com/
"Возрастные особенности реакций мышц на нагрузку"
В науке Физиологии существует раздел "Возрастная физиология"
Это наука, изучающая особенности жизнедеятельности организма на разных этапах онтогенеза. Задачи В.ф.: изучение особенностей функционирования различных органов, систем и организма в целом; выявление экзогенных и эндогенных факторов.
(Педагогический
Рассмотрим какие исследования мышц в возрасной физиологии. Их развитие в онтогинезе, а так же особенности реакций мышц на нагрузку .
Механизм мышечного сокращения.
Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Возбуждение и сокращение мышцы вызывается нервными импульсами, поступающими из нервных центров. Нервные импульсы, приходящие в область контакта нерва и мышцы, приводят к выделению медиатора ацетилхолина, вызывающего потенциал действия. Под влиянием потенциала действия происходит высвобождение кальция, запускающего всю систему мышечного сокращения. В присутствии ионов Са под влиянием активного фермента миозина начинается расщепление аденозинтрифосфата (АТФ), являющегося основным источником энергии при мышечном сокращении. При передаче этой энергии на миофибриллы белковые нити начинают перемещаться относительно друг друга, в результате чего изменяется длина миофибрилл - мышцы сокращаются. Мышцы действуют на костные рычаги, приводят их в движение. В каждом движении участвует несколько мышц. Мышцы, действующие в одном направлении, называются синергистами, действующие в разных направлениях – антагонистами.
Человек может длительное
время сохранять одну и ту же позу.
Это статическое напряжение мышц.
К ним относятся: стояние, держание
головы в вертикальном положении
и др. При статическом усилии мышцы
находятся в состоянии
При динамической работе поочередно
сокращаются различные группы мышц.
Мышцы, производящие динамическую работу,
быстро сокращаются и скоро
Масса и сила мышц в различные возрастные периоды.
В человеческом организме насчитывается более 600 поперечнополосатых мышц. Они составляют от 35 до 40% веса взрослого человека, у женщин несколько меньше, чем у мужчин, у новорожденных до 20-22%, у стариков до 30%.
Информация о работе Возрастные особенности реакций мышц на нагрузку