Автор работы: Пользователь скрыл имя, 05 Декабря 2013 в 17:21, контрольная работа
Ферменты (от лат. fermentum - брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть - кофермент.
Уреаза была одним из первых белков-ферментов, полученным в кристаллическом состоянии. Это однокомпонентный фермент (М=480000), молекула его глобулярна и состоит из 8 равных субъединиц. Уреаза ускоряет гидролиз мочевины до NН3 и СО2.
Характерные черты действия ферментов класса лигаз (синтетаз) выявлены совсем недавно в связи со значительными успехами в изучении механизма синтеза жиров, белков и углеводов: Оказалось, что старые представления об образовании этих соединений, согласно которым они возникают при обращении реакций гидролиза, не соответствуют действительности. Пути их синтеза принципиально иные.
Главная их особенность - сопряженность синтеза с распадом веществ, способных поставлять энергию для осуществления биосинтетического процесса. Одним из таких природных соединений является АТФ. При отрыве от ее молекулы в присутствии лигаз одного или двух концевых остатков фосфорной кислоты выделяется большое количество энергии, используемой для активирования реагирующих веществ. Лигазы же каталитически ускоряют синтез органических соединений из активированных за счет распада АТФ исходных продуктов. Таким образом, к лигазам относятся ферменты, катализирующие соединение друг с другом двух молекул, сопряженное с гидролизом пирофосфатной связи в молекуле АТФ или иного нуклеозидтрифосфата.
Механизм действия лигаз изучен еще недостаточно, но, несомненно, он весьма сложен. В ряде случаев доказано, что одно из участвующих в основной реакции веществ сначала дает промежуточное соединение с фрагментом распадающейся молекулы АТФ, а вслед за этим указанный промежуточный продукт взаимодействует со вторым партнером основной химической реакции с образованием конечного продукта.
6. Локализация ферментов в клетке
Одним из принципиальных отличий ферментов от катализаторов небиологического происхождения является кооперативный характер их действия. На уровне одиночной молекулы фермента кооперативный принцип реализуется в тонком взаимодействии субстратного, активного и аллостерического центров. Однако гораздо большее значение имеет кооперативное осуществление реакций на уровне ансамблей ферментов. Именно благодаря наличию систем ферментов - в виде мультиэнзимных комплексов или еще более сложных образований - метаболонов, обеспечивающих каталитические превращения всех участников единого метаболического цикла - в клетках с большой скоростью осуществляются многостадийные процессы как распада, так и синтеза органических молекул. Ферментативный катализ в многостадийных реакциях идет без выделения промежуточных продуктов: только возникнув, они тут же подвергаются дальнейшим преобразованиям.
Это возможно лишь потому, что в клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. С современной точки зрения клетка представляется высокоорганизованной системой, в отдельных частях которой осуществляются строго определенные биохимические процессы. В соответствии с приуроченностью их к определенным субклеточным частицам или отсекам (компартментам) клетки в них локализованы те или иные индивидуальные ферменты, мультиэнзимные комплексы, полифункциональные ферменты или сложнейшие метаболоны.
Разнообразные гидролазы
и лиазы сосредоточены
7. Методы выделения и очистки ферментов
Долгое время вполне обоснованно считали, что все ферменты - тела белковой природы. Однако в начале 80-х годов была неожиданно открыта способность низкомолекулярных рибонуклеиновых кислот ускорять реакцию превращения предшественников РНК в функционально значимый продукт, т. е. возникло представление о полирибонуклеотидной природе некоторых ферментов, названных рибозимами.
Хотя уже осуществлен
Выделяют ферменты так же, как и другие белки, хотя есть приемы, применяемые преимущественно для ферментов. Из них можно отметить экстракцию глицерином, в котором сохраняются нативные свойства ферментов, а также метод ацетоновых порошков, состоящий в осаждении и быстром обезвоживании при температуре не выше -10°С тканей или вытяжек из них, содержащих ферменты. К их числу относится также получение ферментов путем адсорбции с последующей элюцией (снятием) с адсорбента. Этот метод был введен в химию ферментов А. Я. Данилевским и дал мощный толчок развитию ферментологии. Сейчас адсорбционный метод выделения и очистки ферментов разработан детально. Наряду с ним широко применяют метод ионообменной хроматографии, метод молекулярных сит, электрофорез и особенно изоэлектрофокусирование. Одна из модификаций адсорбционного метода - афинная хроматография, где адсорбентом служит вещество, с которым фермент взаимодействует избирательно. В результате лишь один этот фермент задерживается на колонке, а все сопутствующие ему выходят с током проявителя. Изменяя характер проявителя, исследуемый фермент элюирует с колонки. Этим методом достигают очистки фермента в несколько тысяч раз, применяя всего лишь одноэтажную (аффинная сорбция - элюция) схему выделения.
Для успешного выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала, вплоть до разрушения субклеточных структур: лизосом, митохондрий, ядер и др., которые несут в своем составе многие индивидуальные ферменты. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка, так как она всегда связана с потерей ферментативной активности. Этому способствует проведение операций в присутствии защитных добавок, в частности HS-содержащих соединений (цистеина, глутатиона, меркаптоэтанола, цистеамина, дитиотреитола и др.):
HS ¾ CH2 ¾ СН2 ¾ NН HS¾CH2¾CH(ОН) ¾ СН (ОН) ¾ СH2 ¾ SH
Цистеамин Дитиотреитол
Очень важно поддерживать на всех этапах выделения ферментов низкую температуру, так как некоторые из них даже при -80°С теряют активность.
Для оценки гомогенности
ферментного препарата
ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ
Принципиально новые перспективы открылись перед прикладной энзимологией в результате создания нового типа биоорганических «катализаторов, так называемых иммобилизованных ферментов, т. е. ферментов, связанных с носителем. Нельсон и Гриффин Цуже в 1916 г. показали, что инвертаза, если адсорбировать ее на угле или на алюмогеле, сохраняет каталитическую активность. Однако целенаправленная разработка такого рода гетерогенных катализаторов на основе ферментов началась лишь в 50-х гг.
Сам термин «иммобилизованные ферменты» узаконен сравнительно недавно [8]. В принципе понятие «иммобилизация» можно понимать шире, чем просто связывание фермента с водонерастворимым носителем, а именно как любое ограничение степеней свободы ферментных молекул (или их, фрагментов). Этого можно достичь даже путем внутримолекулярной «сшивки» белковых глобул низкомолекулярными бифункциональными реагентами или же присоединением фермента к водорастворимому полимеру. Однако такие препараты обычно не называют иммобилизованными; их скорее относят к ферментам, которые модифицированы соответственно «сшивающими» или полимерными реагентами.
Иммобилизованные и
модифицированные ферментные препараты,
обладают рядом существенных преимуществ
(при использовании в прикладны
Во-первых, гетерогенный катализатор легко отделить от реакционной среды, что позволяет: 1) остановить реакцию; 2) использовать катализатор повторно; 3) получать продукт, не загрязненный ферментом. Последнее особенно важно в ряде пищевых или фармацевтических производств.
Во-вторых, гетерогенные катализаторы позволяют проводить ферментный процесс непрерывно (например, в проточных реакторах) и регулировать скорость катализируемой реакции (или выход продукта) скоростью потока.
В-третьих, иммобилизация
или модификация позволяют
Именно эти три момента лежат в основе научно-технического направления, называемого часто «инженерная энзимология». Текущая задача инженерной энзимологии — это разработка (конструирование) биоорганических катализаторов с заданными свойствами на основе ферментов (в том числе с использованием лолиферментных комплексов или даже клеток, искусственно лишенных способности расти). Говоря о «заданных» свойствах, следует понимать, что они продиктованы потребностями практики; это, например, необходимое время службы катализатора при определенных условиях реакции (что зависит от его термо- и кислотостабильности и т. п.), избирательность (специфичность) действия, производительность (каталитическая активность), иммуногенность, токсичность, геометрическая форма гетерогенного катализатора и его механические свойства и др.
Ниже будут рассмотрены важнейшие методические и идейные аспекты инженерной энзимологии, а также ее первые успехи и перспективы развития.
Методы иммобилизации [6, 14]. Известны по крайней мере три типа подходов, позволяющих связывать ферменты с носителем: адсорбционные методы, методы механического включения (захвата) и методы химичеокого (ковалентного) присоединения.
Для придания носителю достаточно высокой связующей способности его поверхность приходится иногда «активировать». На рис. 1 приведен один из классических методов иммобилизации белка на полисахаридной матрице. На первой стадии носитель окисляют перйодатом калия до появления альдегидных групп затем фермент соединяют с активированным носителем через азометиновые связи и, наконец, для придания большей устойчивости, связь между белком и носителем восстанавливают боргидридом натрия.
Другой пример - сополимеризационный метод (ряс. 2). На первой стадии в ферментную молекулу вводят двойные связи, способные к сополимеризации; например, фермент ацилируют акрилоилхлоридом; затем акрилоилированный фермент вносят в раствор мономера и проводят сополимеризацию. В результате фермент оказывается химически «вшитым» в полимерную сетку геля.
Выбор носителя и иммобилизационного метода зависит от природы фермента и цели, для которой он должен быть применен. В литературе [6, 24] можно найти полезные рекомендации по этим вопросам.
Геометрические формы носителя могут быть самыми различными; широко используются мелкие гранулы, в том числе пористые шарики, трубочки, волокна, пористые пластины (фильтры), полупроницаемые мембраны и т. 'п. В частности, иммобилизационный метод, основанный на захвате фермента в полиэлектрояитные комплексы [12], позволяет (путем изменения рН или ионной силы раствора) переводить носитель из водорастворимого состояния в всдонерастворимое (осадок) и обратно.
Информация о работе Биотрансформация иммобилизованными ферментами