Теоретические основы расчетов узлов трения на износ

Автор работы: Пользователь скрыл имя, 15 Мая 2014 в 19:05, реферат

Описание работы

Трение может быть полезным и вредным - эту аксиому человек освоил еще на заре цивилизации. Ведь два самых главных изобретения - колесо и добывание огня - связаны именно со стремлением уменьшить и увеличить эффекты трения. Однако понимание природы трения и законов, которым подчиняется это явление, возникло не так уж давно и, к сожалению или к счастью, еще далеко от совершенства.

Содержание работы

Глава 1.
Историческая справка……………………………………………..2
Современная картина трения……………………………………..3
Глава 2.
Проблема разработки методов расчета деталей на износ
2.1 Трение скольжения……………………………………………..4
2.2 Трение качения, жидкостное трение………………………….6
2.3 Фрикционные автоколебания………………………………....7
2.4 Вибрационное сглаживание…………………………………...8
Заключение………………………………………………………….9
Список литературы……………………………………………….11

Файлы: 1 файл

реферат.doc

— 112.50 Кб (Скачать файл)

  Механизм возникновения трения  объясняет молекулярно-механическая  теория трения, в разработку которой  внесли большой вклад российские  ученые (Б.В. Дерягин, И.В. Крагельский и др.) и зарубежные (Боуден, Тейбор, Томлинсон и др.). В соответствии с этой теорией трение имеет двойственную молекулярно-механическую природу. Силу трения можно представить как сумму молекулярной (адгезионной) и механической (деформационной) составляющих:

F = FA + FD  .                                            (3) 

  Молекулярная составляющая обусловлена  сопротивлением разрыву молекулярных  либо межатомных связей, которые  возникают между контактирующими  телами. Механизм этого процесса аналогичен описанному в гл. 2 для разрушения кристаллической решетки при сдвиге. Рассеяние работы трения в теплоту связано с упругой деформацией кристаллических решеток. Работа внешней силы переходит в потенциальную энергию решеток. После разрыва связи потенциальная энергия переходит в энергию колебаний атомов - во внутреннюю. 

  Механическая составляющая вызвана  сопротивлением упругому и пластическому  оттеснению выступов контактирующих  тел, внедрившихся при движении  в контроповерхности. 

  Для измерения силы трения применяют различные трибометры. На них изучают трение образцов в виде дисков, контактирующих торцами; цилиндров, контактирующих по образующей, и т.д. Наиболее простым и часто используемым является трибометр.

На рисунке ниже представлена схема этого устройства.          

Образец 1 прикрепляется к пружинному динамометру 3 и прижимается к контртелу 2, приводимому в движение. Динамометр измеряет силу трения. Прибор позволяет исследовать        влияние на трение шероховатости поверхностей, материалов пары трения, нормальной нагрузки, скорости скольжения, температуры, смазки и многих других факторов.    

 Схема трибометра.   

                            

                         2.2 Трение качения.

Если бы колесо, катящееся по основанию, не испытывало проскальзывания, то такое движение было бы чистым качением и путь, проходимый любой точкой поверхности колеса по основанию за один оборот, составлял бы 2pr. Однако качения без проскальзывания не бывает. Колесо и основание испытывают упругие деформации. При этом колесо в зоне контакта сжимается, а основание - растягивается (стрелки на рис. а).

                                                           

    а)                                                                                      б)                                    

 Взаимодействия колеса с опорой. 

  Поэтому на контакте постоянно  происходит проскальзывание колеса  относительно основания. Это один  из источников рассеяния энергии. Другим источником является вязкоупругое  поведение материалов основания  колеса. Если к оси колеса не  приложено тяговое усилие, то дуга контакта симметрична (см. рис. а), и реакция опоры соосна с нормальной нагрузкой. Если приложить тяговое усилие и колесо приходит в движение, то зона контакта искажается (см. рис.б). Материал сзади колеса не успевает восстановить форму. При малых скоростях коэффициент трения качения увеличивается с повышением скорости, а при больших - уменьшается.  

  Также существует гидродинамическое  трение как один из основных  видов трения.

Гидродинамическое (жидкостное) трение характеризуется тем, что трущиеся поверхности разделены слоем масла. Минимальная толщина слоя должна быть больше, чем суммарная высота наиболее высоких микронеровностей обеих поверхностей: hmin³ (Rmax1+Rmax2).                                       

                                    

 2.3 Фрикционные автоколебания.  

 

 

   Проведём самый простой эксперимент. Будем тянуть тело с помощью  троса, в который врезана пружина  динамометра, и притом потянем  за хвостик с постоянной скоростью. Окажется, что само тело не  двигается с той же скоростью, а перемещается толчками. И это легко качественно объяснимо с помощью представленной выше картины. Действительно, один конец пружины прикреплен к телу, а второй начинает удаляться. К телу приложена упругая сила пружины, пропорциональная ее растяжению. Вначале эта сила мала и меньше силы упругого сцепления контакта (трения покоя), так что тело стоит на месте, а точнее, испытывает только незаметное микросмещение. При дальнейшем вытягивании сила пружины преодолевает силу контакта и тело начинает скользить по поверхности. Но сила сопротивления скольжению ниже статического трения, и возникает положительная разность сил, разгоняющая тело. Пружина начнет сжиматься, а создаваемая ею упругая сила - уменьшаться, тело тормозится, вновь прилипает к поверхности, и придется затратить еще время, чтобы вновь растянуть пружину для преодоления трения покоя. 

  Таким образом, движение тела  оказывается колебательным, в котором  периодически сменяются фазы  прилипания и скольжения (по-английски  это звучит короче - stick and slip). Такое движение принято называть фрикционными автоколебаниями: фрикционными потому, что они порождены трением (friction), а авто потому, что они не навязаны извне какой-либо внешней колеблющейся силой, а являются внутренним свойством системы. Внешнее воздействие - движение конца троса не является колебательным, трос движется с постоянной скоростью. Конечно, через этот трос мы «подпитываем» тело энергией, поэтому-то колебания являются незатухающими, несмотря на потери энергии в контакте.

  Причинами колебаний являются реологические свойства контакта, а также упругие свойства элементов пары трения и их связей с другими деталями. Главным проявлением реологии контакта является рост статической силы трения с увеличением времени неподвижного контакта и скачкообразное падение силы трения при переходе от покоя к движению, а затем падение силы трения с ростом скорости скольжения, вызванное, главным образом, скачком температуры на пятнах контакта.  

  Фрикционные автоколебания - крайне  нежелательный эффект в технике. Для многих машин требуется обеспечить плавное, без толчков, медленное движение. Сварочный робот должен плавно вести сварочный аппарат вдоль свариваемого шва: если возникнут колебания, то в одном месте будет перегрев и свариваемые пластины деформируются, а в другом сварка не осуществится вовсе, аппарат его проскочит. А ведь робот - это механизм, в узлах которого обязательно возникает трение. При работе разных механизмов часто возникают колебания, связанные с трением. Они приводят к появлению скрипов, которые проявляются при движении (скрип колес, тормозов, скрип протекторов автомобилей, когда машина идет юзом и др.).  

  Обрисованная картина указывает  и на два главных пути уменьшения  трения: улучшить качество обработки  поверхностей, чтобы уменьшить пики, а тем самым силу страгивания, или обеспечить возможно лучший доступ смазки и сохранность поверхностного слоя. Это самые важные пути, и они предназначены не только для борьбы за плавность хода, но прежде всего для борьбы с ненужными потерями энергии в скользящих контактах. Поиском эффективных видов смазочных материалов и способов их подвода к скользящим поверхностям занимается большое количество специалистов. В зависимости от уровня гашения колебания могут существовать либо не возникать вовсе. От этого зависит устойчивость, надежность и долговечность механических систем, что необходимо учитывать при проектировании механизмов и замене деталей при ремонте и техобслуживании.                                        

2.4 Вибрационное сглаживание.  

Проведём самый простой эксперимент, который можно осуществить не отходя от стола. Положим какой-нибудь достаточно тяжёлый предмет (например, тяжёлую книгу) на лист бумаги и попытаемся затем вытянуть этот лист из-под предмета. Если медленно потянуть за лист, книга поползет вместе с ним. Попытаемся тянуть не равномерно, а толчками. Скорость движения вытягиваемого листа будет переменной, и, хотя в среднем она может быть прежней или даже меньшей, обнаруживаем, что книга почти останется на месте, а лист из-под нее вытянется. Книга не отцеплялась от листа из-за наличия сухого трения, большой силы трения покоя. Это сцепление уменьшилось только из-за того, что переменная скорость позволила преодолеть барьер трения покоя и привести тела во взаимное движение.

Вернемся теперь к основной экспериментальной схеме. Пусть на основное движение вытягиваемого конца троса наложены высокочастотные вибрации. Соответственно и сила, приложенная к телу, будет быстро колебаться, вибрировать. Экспериментатор может обнаружить замечательный эффект: неприятное движение толчками исчезнет, прилипание отсутствует, тело будет двигаться плавно, лишь слегка вздрагивая под действием колебаний силы, причем эти колебания могут быть почти незаметны для глаза.

Измерения показывают, что средний уровень силы, регистрируемой динамометром, плавно растет с ростом средней скорости вытягивания троса вплоть до уровня трения скольжения. Отметим, что с увеличением размаха (амплитуды) вибраций кривая становится все более пологой. 

  Главный вывод: при не слишком  больших средних скоростях средняя сила сопротивления ведет себя не как сухое трение, а как вязкое, жидкое, пропорциональное скорости, а при росте амплитуды эта "средняя" вязкость падает. Такой эффект принято называть вибрационным сглаживанием или ожижением сухого трения под действием высокочастотных вибраций. Он с успехом используется в технике, в особенности в системах управления, использующих механические устройства. В частности, он позволяет сделать движение робота более плавным, а робота более послушным даже слабым сигналам. 

  Итак, для обеспечения вибрационного сглаживания требуется приложить быстроменяющуюся силу. Поэтому ясно, что классическая модель может оказаться непригодной. Однако математическая задача описания даже простого эксперимента становится очень сложной. Получить явное точное решение здесь невозможно. Однако удается построить достаточно точное приближенное решение, используя идеи  российских математиков Н.Н. Боголюбова и А.Н. Тихонова. Приводить строгие формулировки их теорем затруднительно, но их смысл достаточно прост. Теорема Боголюбова утверждает: если на тяжелое, инерционное тело действуют быстроколеблющиеся силы, то оно в основном реагирует только на среднее значение силы, испытывая лишь дополнительные колебания малой амплитуды, которыми можно пренебречь. Теорема Тихонова говорит: если в системе могут совершаться и быстро устанавливающиеся и медленные движения, то при рассмотрении медленных движений можно пренебречь процессом установления быстрых. 

  На самом деле эффект вибрационного  сглаживания может проявляться и совсем нежелательным образом, о чем гласит такая печальная история. К северу от Петербурга находится самое большое в Европе Ладожское озеро. Те, кто бывал на нем, хорошо знакомы с его коварным характером. Оно может быть обманчиво тихим, с "зеркальной гладью вод", но внезапно откуда-то из-за скал подует ветер, и через час разгуляются волны, и притом крутые и частые. Маленькая байдарка прыгает на них как поплавок, а вот о борт большого корабля волны разбиваются с грохотом, заставляя его корпус дребезжать, то есть испытывать высокочастотную вибрацию. Чтобы избежать коварства Ладоги, еще при Петре I построили обводной канал, чтобы доставлять грузы в Петербург по тихой воде. В питерских холодных и мокрых краях хлеб, как известно, растет плохо, и от века пшеницу везли туда из южных районов России. Уже в наши времена соединили Волгу с Ладогой и Невой большими каналами и пустили по ним большие корабли для перевозки зерна. Зерно насыпалось в огромные трюмы и ехало в них к месту назначения. Однако в начале работы таких больших судов произошло несколько катастроф: пересекая Ладогу в осенние дни, некоторые корабли вдруг начинали сильно раскачиваться с борта на борт, а затем опрокидывались. В чем же дело? Ведь теперь любой корабль еще при проектировании детально рассчитывается, чтобы он не мог потерять устойчивость. Выяснилось, однако, что проектировщики при расчетах предполагали, что зерно в трюме будет лежать неподвижно, как положено любому сыпучему материалу, например куче песка. За счет чего обеспечивается эта неподвижность? Да за счет все того же сухого трения, сцепляющего между собой песчинки или зерна. Это верно, но при отсутствии высокочастотных вибраций! А эти вибрации превратили сыпучий материал почти в жидкий. Зерно в трюме стало колебаться как вода в тазу, наваливаясь на наклонный борт и способствуя переворачиванию. Наверное, каждый, таскавший в руках таз с водой, помнит, как трудно удержать его в горизонтальном положении.

Конечно, как только эффект был понят, нашлись и достаточно простые инженерные решения, чтобы преодолеть неприятные последствия: как и в тех судах, которые возят реальные жидкости, трюм был разделен на отсеки, не позволявшие всему ожиженному грузу наваливаться на один борт.                                          

              

Заключение. 

 

 

   Гибкость и мобильность автомобильного  транспорта при сравнительно  невысокой стоимости перевозок  способствуют развитию промышленного  производства, что призвано сыграть  решающую роль в развитии новой  экономики любого государства. Поэтому  одной из важнейших задач, стоящих перед транспортом Российской Федерации, является улучшение эксплуатационных свойств транспортных средств за счет повышения надежности, долговечности и экономичности. Значимость этой задачи постоянно возрастает из-за конкуренции с железнодорожными и другими видами перевозок и в связи с  развитием сети шоссейных дорог.  

  Надежность и долговечность автомобильного  и других видов транспорта  во многом обусловлены явлениями  трения и изнашивания, происходящими  в узлах машин. Изнашивание приводит  к нарушению герметичности узлов, теряется точность взаимного расположения деталей и перемещений. Возникают заклинивания, удары, вибрации, приводящие к поломкам. Трение приводит к потерям энергии, перегреву механизмов, снижению передаваемых усилий, повышенному расходу горючего и других материалов. Положительно роль трения необходима для обеспечения работы тормозов, сцепления, движения колес. Явления трения и изнашивания взаимно обусловлены: трение приводит к изнашиванию, а изнашивание поверхностей деталей в ходе работы приводит к изменению трения.  

  Для ликвидации последствий изнашивания  проводятся текущие и капитальные  ремонты, в ходе которых изношенные  детали и узлы либо заменяют, либо восстанавливают. В процессе  эксплуатации с изнашиванием  борются путем проведения плановых техобслуживаний.

В США,например, в начале 90-х гг. затраты на ремонт автотранспортных средств составили около 24 млрд. долларов в год. В России же эти расходы (в ценах начала 90-х гг.) составили в среднем 40 млрд рублей. При этом установлено, что из-за износа и плохой регулировки теряется около 15% мощности двигателя. Изношенные ДВС выбрасывают в атмосферу большое количество СО, соединений свинца и других вредных веществ. В связи с этим обострена экологическая проблема применения ДВС. Простои автомобилей из-за технических неисправностей в среднем автохозяйстве достигают 30-40% календарного времени.

В силу сложившегося отставания от международного технологического уровня производства автомобильные ДВС у нас имеют весьма малый ресурс (дизельные двигатели - порядка 7500 моточасов). После ремонта ресурс сокращается до 2500-3000 ч. Автомобили (грузовые) за весь срок службы ремонтируют до 5 раз, как правило, в полукустарных условиях, что приводит к резкому снижению технико-экономических показателей. С учетом перечисленных обстоятельств, трудозатраты за срок службы автотранспорта распределены таким образом: 1,4% - на изготовление; 45,4% - на техническое обслуживание; 46% - на текущий ремонт; 7,2% - на капитальный ремонт.

Информация о работе Теоретические основы расчетов узлов трения на износ