Коррозия и защита от нее

Автор работы: Пользователь скрыл имя, 20 Января 2015 в 00:05, курсовая работа

Описание работы

Периодичность процедур диагностирования и прогнозирования технического состояния нефтепровода зависит от времени эксплуатации трубопровода, поскольку, как правило, первые коррозионные проявления обнаруживаются после шести лет эксплуатации. В связи с этим составляются годовые планы и графики профилактического обследования подземных нефтепроводов, в результате которого выявляются дефекты поверхности трубопровода и его изоляционного покрытия. Обнаруженные крупные дефекты устраняются.

Содержание работы

ВВЕДЕНИЕ……………………………………………………………………………………2
1.ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1.1.Виды коррозии..........................................................................................................4
1.2.Причины и механизм коррозии трубопроводов………………………………….7
1.3.Способы защиты трубопроводов от коррозии……………………………………11
1.4.Защитные покрытия для трубопроводов………………………………………….11
1.5.Способы электрохимической защиты……………………………………………..16
1.5.1.Катодная защита…………………………………………………………16
1.5.2.Протекторная защита……………………………………………………17
1.5.3.Электродренажная защита……………………………………………….18
2.ПРАКТИЧЕСКАЯ ЧАСТЬ
2.1.Задание………………………………………………………………………………22
2.2.Решение……………………………………………………………………………...23
ЗАКЛЮЧЕНИЕ………………………………………………………………………………..26
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

Файлы: 1 файл

КОРРОЗИЯ И ЗАЩИТА.docx

— 677.26 Кб (Скачать файл)

 

1.5.1.КАТОДНАЯ  ЗАЩИТА

 

Катодная защита заключается в наведении на трубопровод специальными установками внешнего электрического поля, создающего катодный потенциал на поверхности трубы. При такой защите коррозионному разрушению подвергается электрически подключенный к защищаемому трубопроводу 1 анод 3, изготовленный из электропроводных материалов.

Защита магистральных трубопроводов от почвенной коррозии осуществляется катодной поляризацией поверхности трубы установками катодной защиты (автоматическими и неавтоматическими).

Для расчета установок катодной защиты необходимо при проведении электрометрических работ получить данные об удельном электрическом сопротивлении грунта в поле токов катодной защиты, а также в месте установки анодного заземления, иметь данные по характеристике трубопровода, ввиду изоляционного покрытия и наличию источников электроснабжения.

Основными параметрами установки катодной защиты являются сила тока и длина защитной зоны, в зависимости от которых принимаются мощность установки, тип и число анодных заземлителей, длина дренажных линий.

Принципиальная схема катодной защиты изображена на рис. 5.

 

 

.

Рис.5. - Принципиальная схема катодной защиты трубопровода: 1 — источник постоянного тока; 2 — изолированный электропровод; 3 — трубопровод с поврежденной изоляцией; 4 — анод (заглубленное железо); 5 — дренаж (соединение тела трубы с электропроводом)

 

1.5.2.ПРОТЕКТОРНАЯ  ЗАЩИТА

 

Протекторная защита относится к электрохимическому виду защиты трубопровода от коррозии и основана на принципе работы гальванического элемента. Она автономна, благодаря чему может использоваться в районах, где отсутствуют источники электроэнергии.

Принципиальная схема протекторной защиты изображена на рис. 6. Наиболее распространенными протекторами являются магниевые, потенциал которых Епр до подключения их к трубопроводу составляет - 1,6 В. Минимальный расчетный защитный потенциал Emin p составляет, так же, как и для катодной защиты - 0,85 В, естественный потенциал трубопровода по отношению к медносульфатному электроду сравнения Еест = - 0,55 В. Для повышения эффективности работы протектора его погружают в специальную смесь солей, называемую активатором.

При протекторной защите к защищаемому трубопроводу присоединяют металлический протектор 5 (анодный электрод), и имеющий более вязкий электрический потенциал, чем потенциал металла трубопровода. С применением протекторной защиты трубопровод принимает полярность катода, а протектор - анода.

 

Рис.6 Принципиальная схема протекторной защиты

 

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода (трубопровод и протектор, изготовленный из более электроотрицательного металла, чем сталь) опущены в почвенный электролит и соединены проводником. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки.

Таким образом, разрушение металла все равно имеет место, но не трубопровода, а протектора.

 

1.5.3.ЭЛЕКТРОДРЕНАЖНАЯ  ЗАЩИТА

 

Значительную опасность для магистральных трубопроводов представляют блуждающие токи электрифицированных железных дорог, которые в случае отсутствия защиты трубопровода вызывают интенсивное коррозионное разрушение в анодных зонах. Наиболее эффективным способом защиты от блуждающих токов является электродренажная защита, основной принцип которой состоит в устранении анодных зон путем отвода (дренажа) блуждающих токов от них в рельсовую часть цепи электротяги, имеющей отрицательный или знакопеременный потенциал.

Применяют прямой, поляризованный и усиленный дренажи.

Прямой электрический дренаж — это дренажное устройство двусторонней проводимости. Схема прямого электрического дренажа включает в себя: реостат, рубильник, плавкий предохранитель и сигнальное реле. Сила тока в цепи «трубопровод-рельс» регулируется реостатом. Если величина тока превысит допустимую величину, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого срабатывает звуковой или световой сигнал.

Прямой электрический дренаж применяется в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

Поляризованный электрический дренаж — это дренажное устройство, обладающее односторонней проводимостью. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости (вентильный элемент) ВЭ. При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

Усиленный дренаж применяется в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным — не к анодному заземлению, а к рельсам электрифицированного транспорта.

Следует отметить, что контуры защитных заземлений технологического оборудования, расположенного на КС, ГРС, НПС и других аналогичных площадках, не должны оказывать экранирующего влияния на систему электрохимической защиты подземных коммуникаций.

Сооружение устройств электрохимической защиты отличается широким фронтом работ, растянутым на многокилометровой трассе магистрального трубопровода, наличием труднопроходимых для колесного транспорта участков, а также многочисленностью строительно-монтажных операций.

Эффективная работа электрохимической защиты возможна только при высоком качестве монтажа всех конструктивных элементов. Для этого требуются научно обоснованная организация работ, максимальная механизация и высокая квалификация строительно-монтажных рабочих. Так как для защиты трубопроводов применяется ограниченное число типов установок, а элементы электрохимической защиты являются в основном типовыми, следует производить предварительную заготовку основных монтажных узлов и блоков в заводских условиях.

Для сооружения электрохимической защиты магистральных трубопроводов от коррозии применяются средства и установки катодной, электродренажной, протекторной защиты, электрические перемычки, контрольно-измерительные пункты и конструктивные узлы типовых проектов.

Работы по сооружению электрохимической защиты необходимо осуществлять в две стадии. На первой стадии необходимо выполнять следующие работы:

• разметку трасс участка производства работ, ЛЭП и кабелей, подготовку строительной площадки;

• выбор и обустройство места для хранения оборудования, монтажных узлов, деталей, метизов, инструментов и материалов;

• доставку техники, машин и механизмов;

• подготовку участка для производства работ;

• доставку оборудования установки катодной защиты, монтажных узлов, деталей, метизов, инструмента, приспособлений и материалов;

• разработку грунта в траншеях и котлованах. Обратную засыпку с трамбовкой после установки оборудования и кабелей до уровня, указанного в рабочей документации;

• сооружение анодных и защитных заземлений, монтаж и укладку протекторов;

• прокладку подземных коммуникаций;

• монтаж катодных и контрольных электрических выводов от трубопроводов, а также контактных соединений анодных, защитных заземлений и протекторных выводов;

• установку и закладку в сооружаемые фундаменты несущих опорных конструкций для монтажа оборудования.

Работы первой стадии следует вести одновременно с основными строительными работами по технологической части трубопровода.

Во второй стадии необходимо осуществлять работы по установке оборудования, подключение к нему электрических кабелей, проводов и индивидуальное опробование электрических коммуникаций и установленного оборудования.

Работы второй стадии должны быть выполнены, как правило, после окончания основных видов строительных работ и одновременно с работами специализированных организаций, осуществляющих пуск, опробование и наладку средств и установок электрохимической защиты по совмещенному графику.

Пуск, опробование и наладку средств и установок электрохимической защиты проводят с целью проверки работоспособности как отдельных средств и установок ЭХЗ, так и системы электрохимической защиты, ввода ее в действие и установления режима, предусмотренного проектом для обеспечения электрохимической защиты участка подземного трубопровода от внешней коррозии в соответствии с действующей нормативно-технической документацией.

Обслуживание установок электрохимической защиты в процессе эксплуатации должно осуществляться в соответствии с графиком технических осмотров и планово-предупредительных ремонтов. График должен включать в себя определение видов и объемов технических осмотров и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах.

Основное назначение работ по профилактическим осмотрам и планово-предупредительным ремонтам - содержание электрохимической защиты в состоянии полной работоспособности, предупреждение преждевременного износа и отказов в работе.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.ПРАКТИЧЕСКАЯ ЧАСТЬ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.ЗАДАНИЕ

 

Запроектировать изоляцию для трубопровода наружным диаметром = 530 мм с толщиной стенки δ= 7 мм при условии, что через 10 лет эксплуатации (τ= 10 лет) переходное сопротивление труба – грунт должно быть не ниже =

 . Удельное электрическое сопротивление грунта ρ= 80 Ом* м удельное электрическое сопротивление стали принято равным = Ом* м. расстояние от поверхности земли до верхней образующей трубы H= 1.7 м. На трубопроводе проложенном в аналогичных условиях были выполнены замеры: через три года эксплуатации (τ= 3 г) переходное сопротивление = 183372 , а через = 7 лет = 13873 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.РЕШЕНИЕ

 

  1. Определяем продольное сопротивление трубопровода:

 

 

удельное электрическое сопротивление материала трубы, δ- толщина стенки трубы, D- наружный диаметр трубопровода;

 

 

  1. Находим конечное переходное сопротивление труба – грунт по формуле:

 

- удельное электрическое  сопротивление грунта;

 

 

 

Корнем этого уравнения является = 352.5 .

 

  1. Вычисляем постоянную времени старения изоляции по формуле:

 

 

 

  1. Определяем начальное переходное сопротивление труба- грунт при условии, что через 10 лет сопротивление будет равно :

 

 

 

 

 

 

 

Откуда

 

  1. Вычисляем необходимое удельное сопротивление изоляции на начало эксплуатации:

 

 

  1. Опираясь на следующую таблицу физико – механических свойств полимерных лент, выбираем изоляцию:

 

В качестве изоляции может быть применена любая лента, а также возможна битумно – резиновая изоляция толщиной 6 мм.

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

Трубопроводы и оборудование в процессе эксплуатации подвергаются процессу коррозии

Под коррозией (от позднелат. corrosio - разъединение) металла понимают процесс самопроизвольного окисления, приводящий к разрушению металла под воздействием окружающей среды. Коррозия в зависимости от механизма реакций, протекающих на поверхности металла, подразделяются на химическую и электрохимическую.

Химическая коррозия представляет собой процесс разрушения металла при взаимодействии с сухими газами или жидкими неэлектролитами .

При длительной эксплуатации трубопроводов, защищенных только изоляционным покрытием, возникают сквозные коррозионные повреждения уже через 5—8 лет после укладки трубопроводов в грунт вследствие почвенной коррозии, так как изоляция со временем теряет прочностные свойства и в ее трещинах начинаются интенсивные процессы наружной электрохимической коррозии.

Информация о работе Коррозия и защита от нее