Автор работы: Пользователь скрыл имя, 22 Сентября 2013 в 00:05, контрольная работа
Природа есть сложная система, сложный организм, где все связано со всем. По выражению современного философа К. Ясперса, «существуют отдельные науки, а не наука вообще как наука о действительном, однако каждая из них входит в мир беспредельный, но все-таки единый в калейдоскопе связей». Аналитический метод и выделение какой-то стороны предмета или явления — наиболее критикуемые стороны научного метода познания. Наука с самого начала стала отвлекаться от вопросов «почему?» и вопросов общего характера, занявшись исследованием «как все происходит?». Путь аналитического естествознания, заданный Ньютоном, превратил общие соображения в четко поставленную математическую задачу, и ученый, не вдаваясь в выяснение физической природы тяготения, решил ее разработанным им же математическим методом.
1.1. Методы естествознания.
1.2. Методы оценок размеров и расстояний.
1.3. Свет - электромагнитная волна.
2.1. Связь законов сохранения со свойствами пространства и времени.
2.2. Волновое описание процессов.
2.3. Суть спора о «тепловой смерти Вселенной».
3.1. Развитие представлений о составе веществ.
3.2. Уровни организации живой природы на Земле.
3.3. Основные положения клеточной теории, методы изучения состава клетки.
4.1. Характеристики и эволюция звезд.
4.2. Рождение частиц по современной модели развития Вселенной.
5.1. Биосферный уровень организации жизни.
5.2. Понятие бифуркации.
Список литературы
На основе закономерностей распределения звезд на диаграмме и известных физических моделей Ресселл построил эволюционный путь звезды (рис. 9.6). Переходя от стадии холодной туманности в голубовато-белую, звезда перемещается в верхней части диаграммы справа налево, пока не достигнет верхнего левого конца Главной последовательности. Далее звезда под влиянием поля тяготения сжимается (при этом нагревания не происходит, а ее вещество достигает плотности, уже не соответствующей плотности газа) и остывает, превращаясь в желтый карлик, как Солнце. Затем она станет красным карликом и погаснет совсем, став черным карликом — пеплом угасшей звезды. Так звезда скользит по Главной последовательности из верхнего левого угла к нижнему правому. Эту гипотезу, просуществовавшую всего 10 лет, назвали теорией скользящей эволюции звезд.
Схема эволюции звезд сопоставлялась с наблюдениями. Существование межзвездной пыли доказал Р.Трюмплер (1930), исследуя звездные скопления. Схема эволюции такова. Облако газа и пыли (газопылевой комплекс) сжимается и нагревается, возникающие неоднородности приводят его в состояние гравитационной неустойчивости, и оно распадается на части. Пока фрагмент прозрачен для инфракрасного излучения, температура его внутренних слоев не повышается, сжатие идет ускоренно. С некоторого момента сжатие переходит в адиабатическое, объект становится непрозрачным, давление и температура внутри растут, замедляя сжатие. Так возникает протозвезда.
Внутренние слои разогреваются за счет энергии гравитации падающего к центру вещества, объект как бы закипает, что отражается бурными вспышками на поверхности. Пример такой звезды — T Тельца. Это продолжается до тех пор, пока не будут достигнуты температуры, достаточные для начала термоядерных реакций. В соответствии со своей массой звезда занимает место на Главной последовательности. Солнце проделало такой путь почти за 2 млн лет. Звезда такой массы «сядет» в среднюю часть последовательности и останется там на срок до 106 лет. Так протозвезда станет звездой.
По мере выгорания водорода давление в оболочке повышается, внешние слои расширяются и звезда начинает покидать Главную последовательность (двинется сначала чуть вправо и вниз), так как на расширение тратится некоторая энергия, и светимость звезды уменьшается (см. рис. 9.6). Равновесие достигается за счет формирования протяженной зоны конвекции, и звезда перейдет в группу красных гигантов. Огромная атмосфера красного гиганта не обеспечивает перенос энергии от внутренних слоев, и внутри звезды процессы пойдут адиабатически. Вблизи ядра температура может достичь необходимого значения для протекания термоядерных реакций, возможно, и с большим выходом энергии, чем у протон-протонных. Тогда холодная огромная атмосфера будет отброшена растущим давлением и превратится в расширяющуюся газовую туманность, которая может рассеяться в пространстве за сотни тысяч лет. Вероятно, наблюдаемая туманность в созвездии Лиры имеет такое же происхождение. Соединения ядер гелия возможны, но они дают меньше энергии (до 9 %), чем соединения ядер водорода. Звезда может продлить свое существование, если из углерода, получающегося при соединении трех атомов гелия, начнут возникать более сложные ядра. Конец наступает при синтезировании железа, которое имеет самые устойчивые ядра и уже не выделяет энергии (рис. 9.7).
4.2. Рождение частиц по современной модели развития Вселенной
Однородное микроволновое
Теория синтеза химических элементов в звездах была необходима. К началу 30-х гг. знали, что большинство звезд состоят из водорода и гелия, но было неясно, откуда берется углерод. В 50-е гг. Хойл предложил реакцию образования углерода из трех ядер гелия в специфических условиях центра звезды. Возможность такой реакции подтвердил американский физик У. Фаулер на ускорителе высоких энергий, а Хойл и Солпитер подвели под эти эксперименты теорию. К 1957 г. Фаулер, Хойл, Маргарет и Джеффри Бербидж разработали теорию синтеза большинства химических элементов в звездных недрах из водорода и гелия. В звездной топке легкие элементы «сплавились» в тяжелые ядра, которые рассеялись в пространстве из-за взрыва Сверхновых или смерти красных гигантов (каким через 5 млрд лет станет Солнце). Затем цикл повторится, образуя звезды нового поколения.
Однако данная теория не могла объяснить существование трех легких элементов — лития, бериллия и бора. Из-за своей неустойчивой природы эти элементы должны образовываться в газе с низкой плотностью и низкими температурами и, первоначально присутствуя в молодых звездах, должны были распадаться при сжатии и нагревании звезды. Это оставалось загадкой. Хотя содержание каждого из них составляет менее 10-9 от количества водорода, уникальное происхождение этих элементов делает их «комментаторами» истории Вселенной. Подобные варианты схем рождения элементов создавались в нескольких местах, но не были привязаны к существующим во Вселенной количественным соотношениям элементов.
Первичное вещество, из которого родилась Вселенная, Алфер и Герман назвали библейским словом «илем» (от греч. ylem — первичная материя). Эта первичная субстанция представляла собой нейтронный газ. Они считали, что в «первичном аду» родились тяжелые ядра путем присоединения свободных нейтронов, и этот процесс продолжался, пока их запас не истощился. Алфер и Герман не могли объяснить образование элементов тяжелее гелия, поскольку нет стабильных изотопов с массовыми числами 5 и 8, значит, нельзя получать тяжелые элементы последовательным добавлением нейтронов. После этого интерес к А-Б-Г-теории заметно остыл, и за десять лет (1953—1963) значительных исследований не было. Хойл в шутку назвал эту гипотезу «the big bang theory» — теорией громкого хлопка. Это понравилось конкурентам Хойла, а в России его перевели как «теория Большого Взрыва».
Гипотезу холодной Вселенной начал развивать в 1962 г. Зельдович. На его взгляд, из теории горячей Вселенной следовали слишком большие плотность и температура излучения, не подтверждаемые данными радиоастрономии. Перебрав все возможные варианты, Зельдович остановился на гипотезе, согласно которой исходным веществом был холодный протон-электронный газ с примесью нейтрино, причем на каждый протон приходилось по одному электрону и одному нейтрино. Эту гипотезу Зельдович разрабатывал вплоть до обнаружения реликтового излучения.
Простой расчет опубликовали еще до этого открытия Хойл и Р.Тейлор (1964). Светимость нашей Галактики оценивают числом 1052 Дж/с. Если возраст Галактики 1010 лет, то при постоянной светимости она выделила за это время 2 • 1061 Дж. При образовании одного ядра гелия выделяется энергия 2,5 • 10-5 Дж. Значит, за время существования Галактики в ней образовалось 1066 а-частиц. При массе частицы 6,67 • 10-27 кг это составляет 7 • 1039 кг, а масса Галактики — 4 • 1041 кг. Поэтому к нашему времени отношение гелия к водороду Не/Н могло бы быть 7/400, или 1/57 — по массе, или 1/230 — по числу атомов. Это меньше наблюдаемого соотношения в 20 раз, так как из анализа состава звездных атмосфер, космических лучей получается Не/Н порядка 1/11. Уже из таких простых оценок понятно, как добиться согласия модели с данными соотношениями.
Плотность материи р во Вселенной практически совпадает с плотностью реликтового излучения. Она выражена через энергию , где. С другой стороны, [R = . Следовательно, . Отсюда ясна связь температуры Т и времени t, прошедшего от начала расширения: .
Сначала (при t 0,01 с) температура очень высока, и вещество состоит из нейтронов и протонов в равных пропорциях. Благодаря присутствию электронов, позитронов, нейтрино и антинейтрино происходит непрерывное превращение и обратно: . При охлаждении за первые 10 с число протонов увеличится за счет нейтронов и начнется образование дейтерия, трития, изотопов гелия Не-3 и Не-4. Через 100 с от начала расширения заканчиваются все ядерные превращения: водорода получается 0,9, гелия — 0,09, остальное приходится на более тяжелые элементы. По массе водород составляет около 0,7, гелий — 0,3. Это и есть химический состав Вселенной к началу формирования звезд и галактик.
Для наглядности эту стадию делят на четыре эры. Для каждой из них можно выделить преобладающую форму существования материи, в соответствии, с чем и даны названия.
Эра адронов находится в самом начале, продолжается 0,0001 с. Плотность с. При высоких температурах
могли существовать только частицы, обладающие большой массой, для которых существенно и гравитационное взаимодействие. Элементарные частицы разделяют на адроны и лептоны, причем первые могут участвовать в сильных и быстрых взаимодействиях, а вторые — в более слабых и медленных, поэтому первые эры получили такие названия. Адронная эра — эра тяжелых частиц и мезонов, велика энергия гамма-квантов. Основную роль играет излучение, количества вещества и антивещества могут быть примерно равными. В конце адронной эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов. Из равновесия с излучением вышли последовательно гипероны, нуклоны, К- и -мезоны и их античастицы.
Эра лептонов продолжается , при этом . Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами. Постепенно из равновесия с излучением вышли -мезоны и их античастицы, электронные и мезонные нейтрино, а избыточные мюоны распались на электроны, электронное антинейтрино и мюонное нейтрино. В конце эры лептонов происходит аннигиляция электронов и позитронов. Через 0,2 с Вселенная становится прозрачной для электронных нейтрино, и они перестают взаимодействовать с веществом. Согласно теории, эти реликтовые нейтрино сохранились до нашего времени, но температура их до 2 К, поэтому пока их не могут обнаружить.
Фотонная эра приходит позже и продолжается 1 млн лет. Основная доля массы — энергии Вселенной приходится на фотоны, которые еще взаимодействуют с веществом. Впервые 5 мин эры происходили события, во многом определившие устройство нашего мира. В конце лептонной эры начались взаимные превращения протонов и нейтронов друг в друга. К началу эры фотонов количества их были примерно равными. При уменьшении температуры протонов стало больше, поскольку реакции с образованием протонов оказывались энергетически более выгодными, и, значит, более вероятными. Это определило скорости реакций, и к началу эры число нейтронов составило 15 %.
Эра излучения в начале характеризуется параметрами: 3000 К < < Т< 1010 К; 10~18 < < 107 кг/м3, нейтроны захватываются протонами, и происходит образование ядер гелия. Кроме того, за эти первые минуты некоторое количество нейтронов пошло на образование ядер бериллия и лития, а некоторое количество распалось. В результате доля гелия в веществе могла составить 1/3. В конце эры температура снизилась до 3 000 К, плотность уменьшилась на 5 —6 порядков, в результате чего создались условия для образования первичных атомов. Излучение отделилось от вещества, Вселенная стала прозрачной для него, и пришла новая эра — эра вещества. Излучение играет главную роль, образуется гелий. В конце эры главную роль в образовании вещества Вселенной начинает играть вещество (масса Вселенной).
В звездную эру, наступившую при t 1 млн лет, Т 3000 К и плотности d 10-18 кг/м3, начинается сложный процесс образования протозвезд и протогалактик.
Грандиозная картина процессов, схематично описанная здесь, разрабатывалась детально, особенную проработку получили самые первые доли секунды. Возможности исследования деталей процессов резко возросли с появлением быстродействующих ЭВМ с большими объемами памяти. Безусловно, эта картина повлияла на наше мироощущение и продолжает уточняться. Модель «горячего» начала объясняла происхождение химических элементов, их количественные соотношения сейчас, но образование крупномасштабных скучиваний в пространстве или существование квазаров она не объясняла.
5.1. Биосферный уровень организации жизни. Основы учения В.И.Вернадского о биосфере
Биосферный уровень — высшая форма организации жизни на Земле. На этом уровне происходит объединение всех круговоротов веществ и превращения энергии в единый круговорот. Живое организовано по типу иерархичных систем: переход с одного уровня на другой связан с сохранением функциональных механизмов, действовавших на предыдущем уровне, и с появлением новых структур и функций, новых качеств. Уровень представлен биосферой — областью активной жизни. Она охватывает аэросферу (нижнюю часть атмосферы), гидробиосферу (гидросферу), террабиосферу (поверхность суши) и литобиосферу (верхнюю часть литосферы). Биосфера — достаточно тонкий слой: микробная жизнь распространена до высот 22 км над поверхностью, а в океанах наличие жизни обнаружено на глубинах до 10— 11 км ниже уровня моря. В земную кору жизнь проникает меньше, микроорганизмы найдены при бурении до глубин 2 — 3 км. Случайно живая материя попадает и в слои, лежащие рядом «над» и «под», их называют пара-и метабиосферой соответственно. Но «пленка жизни» покрывает всю Землю, даже в пустынях и льдах обнаружены следы живого. Распределение жизни крайне неравномерно. В почве (верхние слои литосферы), гидросфере и нижних слоях атмосферы — самое большое количество живого вещества.
Разработка учения о биосфере имеет свою историю. Одним из первых естествоиспытателей, смотревших на Землю как на целое, был М.В.Ломоносов. Он писал в работе «О слоях земных», что «чернозем не первообразная и не первозданная материя, но произошел от согнития животных и растущих тел со временем», что бурый уголь, каменный уголь и чернозем — результаты влияния организмов на грунт. Ломоносов дал общий очерк геологии Земли, доказывал ее древность как планеты. В то время даже окаменелости — ископаемые остатки организмов — далеко не всеми воспринимались как следы некогда бывшей жизни. В 1802 г. Ламарк в «Гидрогеологии» указывал на роль живых организмов в геологических процессах. В книге А. Гумбольдта «Космос» собрано много материала о влиянии живого на геологические структуры.
Информация о работе Контрольная работа по " Концепция современного естествознания"