Контрольная работа по " Концепция современного естествознания"

Автор работы: Пользователь скрыл имя, 22 Сентября 2013 в 00:05, контрольная работа

Описание работы

Природа есть сложная система, сложный организм, где все связано со всем. По выражению современного философа К. Ясперса, «существуют отдельные науки, а не наука вообще как наука о действительном, однако каждая из них входит в мир беспредельный, но все-таки единый в калейдоскопе связей». Аналитический метод и выделение какой-то стороны предмета или явления — наиболее критикуемые стороны научного метода познания. Наука с самого начала стала отвлекаться от вопросов «почему?» и вопросов общего характера, занявшись исследованием «как все происходит?». Путь аналитического естествознания, заданный Ньютоном, превратил общие соображения в четко поставленную математическую задачу, и ученый, не вдаваясь в выяснение физической природы тяготения, решил ее разработанным им же математическим методом.

Содержание работы

1.1. Методы естествознания.
1.2. Методы оценок размеров и расстояний.
1.3. Свет - электромагнитная волна.
2.1. Связь законов сохранения со свойствами пространства и времени.
2.2. Волновое описание процессов.
2.3. Суть спора о «тепловой смерти Вселенной».
3.1. Развитие представлений о составе веществ.
3.2. Уровни организации живой природы на Земле.
3.3. Основные положения клеточной теории, методы изучения состава клетки.
4.1. Характеристики и эволюция звезд.
4.2. Рождение частиц по современной модели развития Вселенной.
5.1. Биосферный уровень организации жизни.
5.2. Понятие бифуркации.
Список литературы

Файлы: 1 файл

Контрольная работа. Концепция современного естествознания.doc

— 749.50 Кб (Скачать файл)

Наличие слаженной системности  в клетке (ядро, рибосомы, митохондрии  и др.) отражает системность и  на уровне многоклеточных организмов. Это — совокупность сосудистой, дыхательной, нервной, пищеварительной систем. По концепции русского физиолога П. К. Анохина, эта функциональная системность, когда функционирование одних частей или систем невозможно без содействия других, обеспечивает целостность каждой системы, когда процессы на низших уровнях организации определяются функциональными связями на высших уровнях. Вся история развития живого организма, физиологии животных и человека подтверждает наличие функциональной системности на онтогенетическом уровне.

Тканевый подуровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. На этом уровне происходит специализация клеток. Ткань образуют клетки одного типа. Ткани возникли вместе с многоклеточностью в филогенезе. У многоклеточных они образуются в онтогенезе как следствие дифференциации клеток. У животных несколько типов тканей: костная, образующая скелет, мышечная, из которой состоит сердце, или эпителий (от греч. epi — на, над, сверх + thele — сосок), покрывающий тот или иной орган и выполняющий защитную, выделительную и всасывающую функции (например, кожа). У растений различают меристематическую, защитную, основную и проводящую ткани.

Органный  подуровень представлен органами организмов. Все функции осуществляются различными органами. Каждый орган состоит из многих тканей, каждая ткань образуется особыми клетками. При большом увеличении в клетках можно обнаружить органеллы, выполняющие свой набор функций. В ядре хранится генетическая информация; в секреторных (от лат. secretio — отделение) гранулах запасаются вещества, которые впоследствии выделяются из клетки. Наружная мембрана контролирует поступление веществ внутрь клетки и выход из нее. Органелла выполняет свою функцию через серию сопряженных химических реакций, каждая из которых катализируется ферментом (от лат. fermentum — закваска). Органелльная организация клетки играет важную роль в ее функционировании, иначе упорядоченная активность клетки была бы невозможна.

Организменный подуровень представлен самими организмами. На этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, свойственных организму данного вида.

Популяционный подуровень отражает надорганизменную систему, обладающую определенным генофондом и определенным местом обитания. В популяциях начинаются эволюционные преобразования и выработка адаптивной формы.

Видовой подуровень определяется видами животных, растений и микроорганизмов. В составе одного вида может быть много популяций, поскольку представители вида могут иметь много мест обитания и занимать разные экологические ниши. Вид является единицей классификации живых существ и продуктом эволюции. Одни виды могут сменять другие.

4.1. Звезды, их характеристики и эволюция

Звезды — это основные тела Вселенной, в них сосредоточено более 90 % наблюдаемого вещества. Солнце — одна из звезд, но для нас Солнце определяет всю жизнь; другие звезды представляются светящимися точками на небосводе, так как очень далеки от нас. Отдельные группы звезд — созвездия — выделяли еще в древности, в их названиях отражены образ мыслей, предания, легенды и жизнь разных народов. Сейчас на звездном небе выделено 88 созвездий с четко обозначенными границами, 60 из них видны с территории нашей страны. В каждом созвездии звезды обозначаются по мере уменьшения яркости буквами греческого алфавита. Некоторые яркие звезды имеют свои собственные названия, которые чаще всего достались им от греческих (Сириус), латинских (Регул) или арабских (Альтаир) астрономов. В течение суток звезды делают полный круг по небу и центр этого круга (полюс мира) находится в том же направлении, в котором днем отбрасывается самая короткая тень (время истинного полудня). Постепенно люди научились ориентироваться (от лат. «ориенс» — восток) и по звездам. В ритме со сменой времен года изменяется вид звездного неба и наибольшая высота Солнца в полдень. Созвездия, видимые над горизонтом вечером на западе, примерно через 2,5 месяца уже появляются утром на востоке. Значит, Солнце движется справа налево среди звезд, его путь называют эклиптикой. Созвездия служат фоном, на котором изучаются и описываются положения перемещающихся по небу тел. Созвездия, по которым проходит годовой путь Солнца, относят к поясу Зодиака. В древности в него входили 12 созвездий, отсюда деление года на 12 месяцев, так как Солнце проходит участок каждого из них за месяц, т. е. по 30 градусов дуги. Сейчас путь Солнца проходит через 13 созвездий (стало «заходить» в созвездие Змееносца).

Звездные величины, введенные в древности, обозначают буквой т. Все видимые звезды еще во 2 в. до н.э. астроном Гиппарх разделил по яркости: переход от одной звездной величины к другой глаз ощущает одинаковым перепадом блеска. У самых ярких звезд т = 1, у самых слабых — 6. В безлунную ночь невооруженным глазом можно видеть почти 3000 звезд (до 6-й звездной величины), в телескоп — почти 350 тыс. звезд (до 10-й величины), 32 млн — до 15-й и 1 млрд — до 20-й. Так как воспринимаются лишь относительные изменения яркости, эти значения связаны со свойствами глаза. Диапазон в 5 звездных величин соответствует отношениям их блеска в 100 раз. Поэтому отношение блеска одной звезды к блеску другой, отличающееся на одну величину, соответствует (100)1/5 = 2,512. Эта величина , где

Е — освещенность (световой поток, падающий на единичную площадку поверхности), — звездная величина, соответствующая 1 лк. И отношение освещенностей звезд равно 2,5 в степени разности их звездных величин, т.е.

Для Солнца , для полной Луны, поэтому

из приведенной формулы можно заключить, что при одинаковой высоте над горизонтом полная Луна освещает земную поверхность в 465 000 раз слабее Солнца. Сириус ярче Полярной звезды, имеющей звездную величину +2, в 25 раз, что соответствует разности звездных величин 3,5. Поэтому звездная величина Сири уса (+2 - 3,5) = -1,5, а Солнце посылает энергии в 1010 раз больше, чем Сириус. Здесь учтено, что освещенности, созданные одним источником на разных расстояниях, обратно пропорциональны квадратам этих расстояний.

Звезды — газовые шары, они светят собственным светом (в отличие от планет). По физическим характеристикам звезды делят на нормальные звезды, белые карлики и нейтронные звезды. Размеры большинства звезд различны, диаметры — от 10 до 107 км, Солнца — 1,4 млн км. Белые карлики и нейтронные звезды имеют диаметр всего 10 — 20 км, есть гиганты — Бетельгейзе, Арктур, а самые большие, красные гиганты, больше Солнца настолько, что, оказавшись на его месте, заняли бы объем, включающий орбиту Юпитера. Плотность вещества гигантов и сверхгигантов меньше плотности воздуха в атмосфере Земли, солнечного — больше плотности воды в 1,5 раза, у белого карлика (звезды Сириус В) — порядка 2 т/см3, а у нейтронных звезд — 1014 кг/м3, порядка плотности атомного ядра.

Светимость звезды — это мощность оптического излучения. Чаще всего светимости звезд выражают в светимостях Солнца, которое излучает 3,8  1026 Вт. Диапазон светимостей наблюдаемых звезд огромен — от 10-3 до 106 светимостей Солнца. Для нас Солнце много ярче других звезд, но это не означает, что оно излучает больше энергии, чем они. Для исключения влияния расстояния ввели понятие абсолютной звездной величины, которую имела бы звезда, находящаяся от нас на расстоянии 10 пк. Абсолютная звездная величина М связана с видимой величиной т соотношением, которое является одним из основных в звездной астрономии: Величина т- М называется модулем расстояния. Для Солнца абсолютная звездная величина Мс равна +4m,72, т.е. существенно меньше, чем видимая, как для всех звезд, которые находятся на расстоянии ближе 10 пк.

Расстояния до звезд, как уже  указывалось, измеряют методом параллакса (см. рис. 2.2). Здесь единицами длин служат парсек и световой год. 1 пк соответствует  годичному параллаксу в 1", т.е. с этого расстояния 1 а. е. видна под углом 1". Отсюда следует, что в 1 пк столько астрономических единиц, сколько угловых секунд в радиане, т. е. 1 пк = 206 265 а. е. Естественно, что наибольший годичный параллакс = (0",76) имеет ближайшая к нам звезда - Проксима Центавра. Поскольку расстояние ,

 , т.е. самая близкая к нам звезда находится на расстоянии, в 272 000 раз большем, чем Солнце. Световой год есть расстояние, которое проходит свет в течение года, т.е. Но 1 пк = 206265 а. е., и потому 1 пк = 3,26 св. г.

В XIX в. звезды рассортировали по размерам и массам, а затем — по спектрам.



Спектральные классы ввел в 1900 г. американский астроном Э. Пикеринг, обозначив их буквами латинского алфавита. Границы между классами были нечеткие, и впоследствии каждый класс разбили на группы от 0 до 9, и наше Солнце попало по спектру в группу G1. Когда при истолковании спектров начали учитывать ионизацию, стало возможным по спектральным сериям определять температуру звезд. Состав звезд не отличается разнообразием: как и Солнце, большинство звезд состоит преимущественно из водорода и гелия. Тогда спектральные классы выстроили в порядке убывания температуры: О, В, A, F, G, К, М. Имеются еще четыре дополнительных класса: для холодных звезд — R, N, S, для горячих — W. Очевидно, что без классификации звезд нельзя говорить об их эволюции.

Химический состав звезд определяют по спектрам. Данные относятся к поверхностным слоям звезд, поскольку они непрозрачны. Оказалось, что 98 % звездного вещества — это водород и гелий, причем обычно водорода по массе в 2,7 раза больше (рис. 9.3). Строение звезды и источник ее энергии казались в какой-то степени выясненными, но возникли другие, не менее важные вопросы. Солнце, возраст которого оценивают в 5 млрд лет, бедно водородом и богато гелием, хотя за это время оно должно было истратить меньше водорода и образовать меньше гелия. Может быть, раньше оно было горячее и процессы шли скорее, но, по геологическим данным, количество солнечной энергии практически не менялось. Если бы водород уже в большей части выгорел, то в самом центре этой звезды могли начаться ядерные реакции и стали образовываться более тяжелые элементы. На Солнце и других звездах много элементов, более сложных, чем гелий. Получается — и они из самого центра Солнца?! Это противоречит гипотезе происхождения их из туманности, стало быть, тяжелые элементы должны появиться как-то иначе.

Диаграмму зависимости светимостей  звезд от их спектральных классов (температур) составили голландец Эйнар Герцшпрунг и американец Генри Норрис Ресселл, она названа именами обоих (рис. 9.4). По оси абсцисс расположены спектральные классы звезд (показатели цвета или температуры), по оси ординат — светимости звезд L (или звездные величины М). Звезды по светимости разделены на семь классов, обозначенных римскими цифрами. Класс светимости пишется после спектрального класса

звезды: так, Солнце — звезда класса G2V. На диаграмме звезды располагаются не беспорядочно, а образуют несколько последовательностей.

Главная последовательность — узкая полоса звезд, протянувшаяся из верхнего левого угла вниз. Так, в окрестности Солнца большинство звезд сконцентрированы вдоль нее. В правом верхнем углу — сверхгиганты. Размеры звезд сумели оценить с помощью изобретенного в 1881 г. интерферометра, который улавливал разницу в длинах световых волн, исходящих от разных точек поверхности звезды. Оказалось, что вблизи Солнца на одного сверхгиганта приходится около 1000 гигантов и около 10 млн звезд Главной последовательности.

Группа звезд-гигантов компактна и расположена вверху диаграммы между Главной последовательностью и группой сверхгигантов. Параллельно Главной последовательности, несколько ниже ее, расположены звезды, образующие последовательность субкарликов (у них содержание металлов гораздо ниже, чем у звезд Главной последовательности), в левом нижнем углу диаграммы — группа белых карликов, светимость которых меньше солнечной в сотни раз.


Масса звезды приобрела большую значимость, когда были открыты источники энергии звезд. Масса Солнца Мс = 2 1030 кг, а массы почти всех звезд лежат в пределах 0,1 — 50 массы Солнца. Практически наиболее верным способом определения массы звезды являются исследования движений двойных звезд. Оказалось, что положение звезды на Главной последовательности определяется ее массой (рис. 9.5).

Соотношения светимостей  звезд и их радиусов , светимостей и масс сравнили со значением количества энергии, излучаемой поверхностью звезды за единицу времени , и получили соотношение между температурой поверхности и ее массой . Итак, чем меньше масса звезды, тем меньше ее поверхностная температура и более поздним будет ее спектральный класс. Отсюда можно оценить массу звезды и по ее светимости: . Звезды отличаются цветом; считается, что имеют место законы равновесного излучения — закон Стефана—Больцмана и закон Вина. Антарес имеет красный цвет, Капелла — желтый, Сириус — белый, Вега — голубовато-белый.

Модели внутреннего строения звезд  основаны на соотношениях между их параметрами. Они получены Эддингтоном из условий равновесия плазмы внутри звезд. Оказалось, что с увеличением массы скорость потребления топлива растет быстрее, чем его запас, т. е. чем больше и горячее звезда, тем быстрее кончится ее топливо и ее «жизнь» на Главной последовательности, где находится 0,99 всех видимых звезд. Так, Солнце, по оценкам

ученых, пробудет на ней  еще 8 млрд лет, т.е. оно еще не достигло своего среднего возраста. Если бы Солнце принадлежало к классу А, то его срок (5 млрд лет) был бы на исходе. Для такой большой и горячей звезды, как S Золотой Рыбы, этот срок был бы всего 2 — 3 млн лет. В теории Эддингтона все свойства звезды основывались на модели идеального газа, поэтому звезды у него при сжатии обязательно нагревались.

Информация о работе Контрольная работа по " Концепция современного естествознания"