Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 21:13, контрольная работа
Следовательно парадигма - краткое описание основных понятий, допущений, предложений, процедур и проблем какой-либо самостоятельной области знаний или теоретического подхода; в методологии - представления о предмете науки, ее основополагающих теориях и специфических методах, в соответствии с которыми организуется исследовательская практика научным сообществом в определенный исторический период. Парадигма - одно из ключевых понятий современной философии науки, обозначающее совокупность убеждений, ценностей, методов и технических средств, принятых научным сообществами обеспечивающих существование научной традиции.
1.вопрос (5) Что называют парадигмой науки?.................................стр.3-6
2.вопрос (11)Какой новый вклад в картину мира вносит
электромагнитная теория?............................................стр.7-8
3.вопрос (18)Современные представления о пространстве
и времени?.....................................................................стр.9-11
4.ворос (25)Что такое пустота или вакуум, как менялись
Взгляды на него?..........................................................стр.12-15
5.вопрос(39)Развитие учения о составе вещества?........................стр.16-19
6.вопрос(44)Что выражает первый закон термодинамики?..........стр.20-22
7.вопрос(51)Проблемы происхождения и развития Земли?.........стр.23-26
8.вопрос(53)Какие гипотезы происхождения живой материи
вам известны?...............................................................стр.27-41
9.вопрос(59)Важнейшие достижения биологических
десятилетий?.................................................................стр.42-45
10.вопрос(68)Этические проблемы естествознания?.........................стр.46
Список литературы………………………………………...............стр.47-48
Развитие вакуумной картины может иметь и более далеко идущие последствия для наших представлений о строении мира.
Еще с появлением теории относительности была обнаружена тесная связь между свойствами материи и свойствами пространства и времени. При этом до сих пор мы исходили из предположения, что определяющую роль играют свойства материи (т. е. вещества, частиц, полей), а свойства пространства и времени являются вторичными, производными. Однако в принципе не исключена возможность, что в действительности все обстоит наоборот, т. е. свойства материи представляют собой не что иное, как проявление определенных геометрических свойств, так сказать, пространственно-временного «каркаса».
Во всяком случае, в распоряжении современной науки уже имеются определенные данные, свидетельствующие о том, что вакуум, возможно, играет весьма большую роль во многих природных процессах. В частности, академик Наап обратил внимание на один любопытный факт, обнаруженный при изучении гравитационных взрывов — особых процессов, происходящих во Вселенной, при которых происходит неудержимое катастрофическое сжатие или разлет больших масс вещества.
Как показывают расчеты, в районе таких взрывов имеются области, в которых, с точки зрения современной физической теории, вообще нет ничего — ни вещества, ни пространства, ни времени, ни движения. Но, с другой стороны, как это ни покажется странным, удивительные области, о которых идет речь, существуют вполне реально и как раз па их границе начинается история объекта, находящегося в состоянии катастрофического расширения. Другими словами, складывается впечатление, что здесь происходит возникновение из ничего и обращение в ничто. Но так как подобное явление невозможно, то, видимо, столкнувшись с гравитационными взрывами, паука вплотную подошла к познанию совершенно новых форм существования материи, нам еще не известных. И очень может быть, что одной из таких форм является именно вакуум.
Это обстоятельство во многом увеличивает интерес к дальнейшему изучению свойств пространства и времени.
Академик Г. Наан считает, что открытие во Вселенной сверхплотных объектов, а также мощных источников энергии — квазаров, указывает на то, что эти свойства могут оказаться гораздо более сложными, чем представлялось раньше.
Согласно современным физическим воззрениям реальное пространство Вселенной, в котором мы живем, является «трехмерным» и «односвязным». Первое из этих свойств означает, что в нашем пространстве через одну точку можно провести только три взаимно перпендикулярные прямые линии. Правда, согласно теории относительности Альберта Эйнштейна в природе существует и еще одно, четвертое измерение: время. Но это четырехмерное «пространство — время» теории относительности фактически является лишь математическим приемом, позволяющим в удобной форме описывать различные физические процессы. Поэтому говорить о том, что мы с точки зрения теории относительности живем в четырехмерном мире, можно лишь в том смысле, что все происходящие в природе события совершаются не только в пространстве, но и во времени.
39 вопрос.
Развитие учения о строении вещества
В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью. Атом каждого элемента несет два заряда: положительный и отрицательный, но в зависимости от места в ряду один из зарядов больше. Объединение атомов в молекулу приводит к частичной нейтрализации зарядов.
Полная нейтрализация невозможна из-за неравенства зарядов. Поэтому молекулы каждого соединения обладают также избыточным зарядом и склонны к образованию более сложных молекул в виде комплексов.
Таким образом, по Берцелиусу,
молекула представляет собой объединение
двух разноименно заряженных атомов
или атомных групп-радикалов. В
этом заключается содержание понятия ”структура" по Берцелиусу.
Французский химик Ш. Жерар (1816-1856) показал, что структурные представления Берцелиуса соответствуют действительности только в ряде случаев. Молекула является единой неделимой и унитарной системой, в которой все атомы всех элементов взаимодействуют — взаимно преобразуются, в этом сущность "структуры" по Жерару.
Комбинируя атомы разных химических элементов, можно создать структурные формулы любого химического соединения.
Таким образом можно создавать схему синтеза любого химического соединения, в том числе и неизвестного. Однако в некоторых случаях, хотя формульная схема составлена правильно, химическая реакция может не осуществиться. Поэтому нужно учитывать не только методику составления формул, но и химическую активность реагентов, которая лежит в основе теории химического строения Бутлерова.
Крупным шагом в развитии представлений о строении молекул явилась теория химического строения, выдвинутая в 1861 г. выдающимся русским химиком А. М. Бутлеровым.
Основу теории, разработанной А. М. Бутлеровым, составляют следующие положения:
1. Атомы в молекулах
соединены друг с другом в
определенной
2. Соединение атомов происходит в соответствии с их валентностью.
3. Свойства веществ
зависят не только от их
состава, но и от их «
В 30-е годы нашего века теория Бутлерова нашла физическое квантово-механическое обоснование. Согласно современным представлениям структура молекул — это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов.
Структурная химия охватывает и неорганические материалы. В структурной неорганической химии можно выделить два перспективных направления:
• синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;
• создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными, оптическими и другими свойствами.
Исследования последнего времени направлены на разработку эффективных технологий синтеза не только органических, но и неорганических материалов.
Многообразие химических систем.
Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда—вещества, окружающие систему. Обычно система физически отграничена от среды.
Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы, гетерогенной—система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.
Примером гомогенной
системы может служить любая
газовая смесь (все газы при не
очень высоких давлениях
Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы.
Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Скорость гомогенной реакции и скорость гетерогенной реакции определяются различно.
Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.
Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы .
Неорганические и органические соединения.
Соединения углерода (за исключением некоторых наиболее простых) издавна получили название органических соединении, так как в природе они встречаются почти исключительно в организмах хвойных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов. В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода: угольная кислота, ее соли и другие, встречающиеся в неживой природе, получили название неорганических или минеральных веществ.
Деление веществ на органические и неорганические возникло вследствие своеобразия органических соединений, обладающих специфическими свойствами. Долгое время считалось, что углеродосодержащие вещества, образующиеся в организмах, в принципе невозможно получать путем синтеза из неорганических соединений.
Органическая химия
— химия углеводородов и их
производных. Особенность органической
химии связана с
Связь между атомами в молекулах органических веществ — ковалентная. Этим объясняется отсутствие электролитических свойств многих органических веществ.
Органические соединения содержат простые (одинарные) связи между атомами углерода С—С и атомами углерода и водорода С—Н, которые близки друг другу прочности. Поэтому органические вещества взаимодействуют друг с другом с большим трудом или вообще взаимодействуют.
Органические вещества, как правило, молекулярного строения, поэтому они имеют низкие температуры плавления. Все органические вещества горючи и легко разлагаются при нагревании. Важной особенностью органических соединений является изомерия. Этим объясняется различие свойств веществ, имеющих одинаковый состав и молекулярную массу.
С развитием синтеза органических соединений была уничтожена грань, отделяющая эти соединения от неорганических, однако название «органические соединения» сохранилось. Большинство известных в настоящее время соединений углерода в организмах даже не встречаются, а получены искусственным путем.
44 вопрос.
Обмен энергией между термодинамической системой и окружающими телами в результате теплообмена и совершаемой работы
Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, т. е. изменяются ее макроскопические параметры (температура, давление, объем). Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, характеризующими состояние системы, то отсюда следует, что процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.
Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:
Изменение ΔU внутренней энергии неизолированной
термодинамической системы
Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме: Q = ΔU + A.
Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.
Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.
Применим первый закон термодинамики к изопроцессам в газах.
В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, Q = ΔU = U (T2) – U (T1).
Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).
Информация о работе Контрольная работа по "Концепциям современного естествознания"