Автор работы: Пользователь скрыл имя, 01 Февраля 2014 в 14:32, реферат
Еще одним фундаментальным понятием науки, которое наряду с понятием "гармонии" имеет отношение практически ко всем структурам природы, науки и искусства, является "симметрия". Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: "Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".
Введение………………………………………………...3
1. Понятие симметрии…………………………………4
2. Типы симметрии……………………………………7
3. Симметрия в природе……………………………....16
4. Заключение……………………………………….....22
5. Список литературы…………………………………23
Содержание:
Введение………………………………………………...3
Введение.
Еще одним фундаментальным понятием науки, которое наряду с понятием "гармонии" имеет отношение практически ко всем структурам природы, науки и искусства, является "симметрия".
Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: "Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".
Симметрия – свойство, отражающее структурную особенность объекта, остающегося неизменным при изменении порядка расположения в пространстве и времени равных между собой частей этого объекта. Понятие симметрии может быть расширено на случай, когда неизменными при преобразовании остаются только некоторые характеристики объекта. Принцип симметрии – один из общих методологических принципов науки.
В зависимости от характера объекта и его частей понятие симметрии может относиться к эстетике или математике, естествознанию или лингвистике. Для каждой из этих областей симметрия имеет конкретную расшифровку. Вне зависимости от того, какой конкретный тип симметрии рассматривается, всегда предполагается, что операции, приводящие к взаимозаменяемости различных симметричных частей объектов, операции симметрии, обладают взаимной независимостью и их можно реализовывать в определенной последовательности, получая, например в случае пространственных симметрий, фигуры со сложной симметрией, выражаемой суммой (последовательным выполнением) отдельных операций симметрии. В естествознании особый интерес представляют совокупности симметрий, образующих группу, т.е. отвечающих требованиям, предъявляемым к группе: в группе существует нулевая операция симметрии, у каждой входящей в группу операции симметрии есть обратная операция, в сумме с которой они дают нулевую операцию симметрии, сумма любых двух операций симметрии из группы есть операция симметрии группы.
Принцип симметрии был отнесен к разряду порождающих принципов науки, и было показано, что имплицитно он функционирует в подобном качестве со времен античности. В эстетике понятие симметрии традиционно ассоциируется с гармонией, красотой, порядком. Известные с древности свойства симметрии геометрических тел отражали и эти эстетические критерии. По определению, пространственной симметрией обладает геометрический объект, части которого совпадают, будучи отраженными либо относительно некоторой мысленной линии или плоскости, проходящих внутри этого объекта, либо вокруг точки, принадлежащей объекту. В первом случае линия называется осью или плоскостью симметрии тела, во втором – центром симметрии. Линия может находиться вне тела, а часть объекта совпадать с ним самим, в этом случае имеет место зеркальная симметрия относительно оси. Сфера – пример геометрического тела, имеющего бесконечно много плоскостей симметрии и осей симметрии, проходящих через ее центр, именно она рассматривалась в античности как наиболее совершенное из всех геометрических тел, что дает пример совпадения эстетического критерия и свойства симметрии.
Существует множество определений симметрии:
В настоящее время в
естествознании преобладают определения
категорий симметрии и
Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических.
Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир, попросту, не смог бы существовать.
Следует выделить аспекты, без которых симметрия невозможна:
Важно подчеркнуть, что инвариант вторичен по отношению изменению; покой относителен, движение абсолютно
Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. В связи с этим выделяют разные типы симметрии.
Понятия симметрии и асимметрии
фигурируют в науке с древнейших
времен скорее в качестве эстетического
критерия, чем строго научных определений.
До появления идеи симметрии математика,
физика, естествознание в целом напоминали
отдельные островки безнадежно изолированных
друг от друга и даже противоречивых
представлений, теорий, законов. Симметрия
характеризует и знаменует
Симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира, всех его составляющих. Симметрия обладает многоплановым и многоуровневым характером. Например, в системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике – при описании геометрических объектов.
Симметрия может быть классифицирована как:
Простейшие симметрии
представимы геометрически в
нашем обычном трехмерном пространстве
и потому наглядны. Такие симметрии
связаны с геометрическими
Кроме простых (геометрических)
симметрий в физике широко встречаются
весьма сложные, так называемые динамические
симметрии, то есть симметрии, связанные
не с пространством и временем,
а с определенным типом взаимодействий.
Они не являются наглядными, и даже
простейшие из них, например, так называемые
калибровочные симметрии, затруднительно
пояснить без использования довольно
сложной физической теории. Калибровочным
симметриям в физике также отвечают
некоторые законы сохранения. Например,
калибровочная симметрия
В ходе общественной практики
человечество накопило много фактов,
свидетельствующих как о
В этой связи можно выделить следующие пять категорий симметрии:
Асимметрия
Асимметрия – это не симметрия, т.е. такое состояние, когда симметрия отсутствует. Но еще Кант говорил, что отрицание никогда не является простым исключением или отсутствием соответствующего положительного содержания. Например, движение – это отрицание своего предыдущего состояния, изменение объекта. Движение отрицает покой, но покой не есть отсутствие движения, так как очень мало информации и эта информация ошибочна. Отсутствия покоя, как и движения, не бывает, поскольку это две стороны одной и той же сущности. Покой – это другой аспект движения.
Полного отсутствия симметрии также не бывает. Фигура, не имеющая элемента симметрии, называется асимметричной. Но, строго говоря, это не так. В случае асимметричных фигур расстройство симметрии просто доведено до конца, но не до полного отсутствия симметрии, так как эти фигуры еще характеризуются бесконечным числом осей первого порядка, которые также являются элементами симметрии.
Асимметрия связана с отсутствием у объекта всех элементов симметрии. Такой элемент неделим на части. Примером является рука человека. Асимметрия – это категория, противоположная симметрии, которая отражает существующие в объективном мире нарушения равновесия, связанные с изменением, развитием, перестройкой частей целого. Так же, как мы говорим о движении, имея в виду единство движения и покоя, так же симметрия и асимметрия – две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрии. Они всегда находятся в единстве и непрерывной борьбе.
На разном уровне развития
материи присутствует то симметрия
(относительный порядок), то асимметрия
(тенденция нарушения покоя, движение,
развитие), но всегда эти две тенденции
едины и их борьба абсолютна. Реальные,
даже самые совершенные кристаллы
далеки по своей структуре от кристаллов
идеальной формы и идеальной
симметрии, рассматриваемой в
Определения симметрии и
асимметрии указывают на универсальный,
общий характер симметрии и асимметрии
как свойств материального