Физиология и биофизика возбудимых клеток

Автор работы: Пользователь скрыл имя, 09 Октября 2013 в 22:08, реферат

Описание работы

Состояние активности проявляется изменением: физиологических параметров клетки, ткани организма, например изменением метаболизма.
Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией — возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми.

Файлы: 1 файл

FIZIOLOGIYa.doc

— 976.50 Кб (Скачать файл)

Механизмы мышечного сокращения.

При световой микроскопии  было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски  и Н-зоны саркомеров суживаются. При  электронной, микроскопии было установлено, что длина нитей актина и миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно этой теории мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофирриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по, системе поперечных трубочек СР., на продольные трубочки и цистерны. Возникает деполяризация мембранных цистерн и из них в саркоплазму высвобождаются ионы Са. На нитях актина расположены молекулы еще двух белков - тропонина и тропомиознна. При низкой (менее 10 в 8 степени) концентрации кальция, т.г. в состоянии покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина. Когда ноны кальция начинают выходить. из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления и разъединения поперечных мостиков с нитями актина. При этом головки ритмически продвигаются; по нитям актина к 2-мембранам. Для полного сокращения мышцы необходимо 50' таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается, и мембранный потенциал возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФ-Фаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического   ретикулума и та концентрация подает ниже 10"'М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние.      Энергетика мышечного сокращения Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры. расщепляющие АТФ до АДФ и неорганического фосфата.. Т.е. миозин является одновременно ферментом АТФ-азой ПД Активность миозина как АТФ-фазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР. которые способствуют освобождению активных центров актина от тропомиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ-Ф=АТФ). Фосфагенная   система   ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0.5 - 2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты ;1 снижением содержания кислорода. При продолжительной работе, с усилением кровообращения ресинтез АТФ начинает осуществляться с помощью окислительного фосфолирирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей до ферментативного аутолиза этих белков). Возникает трупное окоченение, АТФ необходима для расслабления потом, что обеспечивает работу Са-насоса.

Биомеханика мышечных сокращений. Одиночное сокращение, суммация. тетанус.

При нанесении на двигательный нерв или мышцу одиночного порогового или сверх порогового раздражения, возникает одиночное сокращение.  При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это  время от момента нанесения  раздражения до начала сокращения. Его длительность около -2 мсек. Во время латентного периода  генерируется и распространяется  ПД, происходит, высвобождения кальция ,13 СР. взаимодействие актина с миозином и т.д.

2. Период укорочения. В зависимости от типа мышцы  (быстрая или медленная) его  продолжительность от 10 до 100 Мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис. В: режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения,    но больше продолжительности рефракторного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис).. Гладкий

тетанус возникает тогда, когда', каждое последующее раздражение наносится а конце периода укорочения т.е. имеет место полная суммация отдельных сокращений и (рис.). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук;

при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и с-илы раздражения  на амплитуду сокращения

 Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется  оптимальной;  Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы. вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону' силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если  и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной вобудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы  сокращения. Сила и работа мышц.

Различают следующие  режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а  тонус не изменяется. В двигательных  функциях организма не участвуют.

2. изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы. Например, при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина и тонус  мышцы. С помощью их происходит  передвижение тела. другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола. возраста, степени тренированности  человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например, портняжная'. веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь

ш;!1еречного физиологического сечения. Это сумма площадей поперечного  сечения всех мышечных волокон. образующих мышцу. Наибольшая площадь поперечного физиологического сечения а, следовательно, сила, у перистых мыши. Наименьшая у мышце параллельным расположением волокон (рис.).

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении. нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами. кистевым, становым и т.д..

Для сравнения силы различных  мышц определяют их удельную или абсолютную силу. Она равна максимальной. делённой на кв. см. площади поперечного сечения  мышцы. Удельная сила икроножной мышцы  человека составляет и.2 кг см2. трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р*h)

 Работа измеряется  в кГ*М, джоулях. Зависимость  величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.). Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа, выполняемая в единицу времени (Р = А * Т). Вт

Утомление мышц

Утомление - это временное снижение работоспособности мыши в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, .но/снижается амплитуда (рис.) Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В  некоторых случаях, полного расслабления не наступает, развивается   контрактура.  Это состояние непроизвольного длительного сокращения мышцы. Работа  утомление мышц исследуются с помощью эргографии. В прошлом •веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.  

1)Теория Шиффа: утомление  является следствием истощения  энергетических запасов, а мышце.

2. Теория Пфлюгера: утомление  обусловлено накоплением в мышце продуктов обмена.  

3. Теория Ферворна: утомление  объясняется недостатком кислорода  в мышце. Действительно эти  факторы способствуют утомлению  в экспериментах на изолированных  мышцах. В них нарушается ресинтез  ЛТФ. накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода.  Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежи? нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением  процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов. и угнетением синаптической передачи.

Двигательные  единицы

 Основным морфо-функциональным элементов нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемым его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных  волокон. Двигательные единицы мелких мышц, осуществляющих гонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных, их  сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся_на_3_группы:

I. Медленные неутомляемые. Они образованы красными мышечными  волокнами, в которых меньше  миофнбрил. Скорость сокращения  и сила этих волокон относительно  небольшие, но они мало утомляемы.  Поэтому их относят тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример, камбаловидная мышца. Н В. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными, Мотонейооны этих ..'11^ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза. II А. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Информация о работе Физиология и биофизика возбудимых клеток