Автор работы: Пользователь скрыл имя, 23 Апреля 2013 в 18:32, лекция
Нормальная физиология – биологическая дисциплина, изучающая:
1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);
2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);
3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);
4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).
Гормоны, не связанные с
транспортными белками крови, имеют
прямой доступ к клеткам и тканям.
Параллельно протекают два
По химической природе гормоны разделены на три группы:
1) стероиды;
2) полипептиды и белки с наличием углеводного компонента и без него;
3) аминокислоты и их производные.
Для всех гормонов характерен относительно небольшой период полужизни – около 30 мин. Гормоны должны постоянно синтезироваться и секретироваться, действовать быстро и с большой скоростью инактивироваться. Только в этом случае они могут эффективно работать в качестве регуляторов.
Физиологическая роль желез внутренней секреции связана с их влиянием на механизмы регуляции и интеграции, адаптации, поддержания постоянства внутренней среды организма.
2. Свойства гормонов, механизм их действия
Выделяют три основных свойства гормонов:
1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);
2) строгую специфичность действия (ответные реакции на действие гормона строго специфичны и не могут быть вызваны другими биологически активными агентами);
3) высокую биологическая активность (гормоны вырабатываются железами в малых количествах, эффективны в очень небольших концентрациях, небольшая часть гормонов циркулирует в крови в свободном активном состоянии).
Действие гормона на функции организма осуществляется двумя основными механизмами: через нервную систему и гуморально, непосредственно на органы и ткани.
Гормоны функционируют как химические посредники, переносящие информацию или сигнал в определенное место – клетку-мишень, которая имеет высокоспециализированный белковый рецептор, с которым связывается гормон.
По механизму воздействия клеток с гормонами гормоны делятся на два типа.
Первый тип (стероиды, тиреоидные гормоны) – гормоны относительно легко проникают внутрь клетки через плазматические мембраны и не требуют действия посредника (медиатора).
Второй тип – плохо проникают внутрь клетки, действуют с ее поверхности, требуют присутствия медиатора, их характерная особенность – быстровозникающие ответы.
В соответствии с двумя
типами гормонов выделяют и два типа
гормональной рецепции: внутриклеточный
(рецепторный аппарат
1) высокое сродство к определенному гормону;
2) избирательность;
3) ограниченная емкость к гормону;
4) специфичность локализации в ткани.
Эти свойства характеризуют количественную и качественную избирательную фиксацию гормонов клеткой.
Связывание рецептором гормональных соединений является пусковым механизмом для образования и освобождения медиаторов внутри клетки.
Механизм действия гормонов с клеткой-мишенью происходит следующие этапы:
1) образование комплекса «гормон—рецептор» на поверхности мембраны;
2) активацию мембранной аденилциклазы;
3) образование цАМФ из АТФ у внутренней поверхности мембраны;
4) образование комплекса «цАМФ—рецептор»;
5) активацию каталитической протеинкиназы с диссоциацией фермента на отдельные единицы, что ведет к фосфорилированию белков, стимуляции процессов синтеза белка, РНК в ядре, распада гликогена;
6) инактивацию гормона, цАМФ и рецептора.
Действие гормона может осуществляться и более сложным путем при участии нервной системы. Гормоны воздействуют на интерорецепторы, которые обладают специфической чувствительностью (хеморецепторы стенок кровеносных сосудов). Это начало рефлекторной реакции, которая изменяет функциональное состояние нервных центров. Рефлекторные дуги замыкаются в различных отделах центральной нервной системы.
Выделяют четыре типа воздействия гормонов на организм:
1) метаболическое воздействие – влияние на обмен веществ;
2) морфогенетическое воздействие – стимуляция образования, дифференциации, роста и метаморфозы;
3) пусковое воздействие – влияние на деятельность эффекторов;
4) корригирующее воздействие – изменение интенсивности деятельности органов или всего организма.
3. Синтез, секреция и выделение гормонов из организма
Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический контроль осуществляется либо на уровне образования мРНК (матричной РНК) самого гормона или его предшественников (если гормон – полипептид), либо на уровне образования мРНК белков ферментов, которые контролируют различные этапы образования гормона (если он – микромолекула).
В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:
1) прямой (синтез в полисомах предшественников большинства белково-пептидных гормонов), схема биосинтеза: «гены – мРНК – прогормоны – гормоны»;
2) опосредованный (внерибосомальный синтез стероидов, производных аминокислот и небольших пептидов), схема:
«гены – (мРНК) – ферменты – гормон».
На стадии превращения прогормона в гормон прямого синтеза часто подключается второй тип контроля.
Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона.
Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:
1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);
2) освобождение из белоксвязанной формы (секреция тропных гормонов);
3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).
Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.
Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация.
В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.
4. Регуляция деятельности эндокринных желез
Все процессы, происходящие
в организме, имеют специфические
механизмы регуляции. Один из уровней
регуляции – внутриклеточный, действующий
на уровне клетки. Как и многие многоступенчатые
биохимические реакции, процессы деятельности
эндокринных желез в той или
иной степени саморегулируются по принципу
обратной связи. Согласно этому принципу
предыдущая стадия цепи реакций либо
тормозит, либо усиливает последующие.
Этот механизм регуляции имеет узкие
пределы и в состоянии
Первостепенную роль в
механизме регуляции имеет
Нарушение процессов регуляции приводит к патологии функций желез и всего организма в целом.
Регуляторные механизмы могут быть стимулирующими (облегчающими) и тормозящими.
Ведущее место в регуляции
эндокринных желез принадлежит
центральной нервной системе. С
1) нервный. Прямые нервные влияния играют определяющую роль в работе иннервируемых органов (мозгового слоя надпочечников, нейроэндокринных зон гипоталамуса и эпифиза);
2) нейроэндокринный, связанный с деятельностью гипофиза и гипоталамуса.
В гипоталамусе происходит
трансформация нервного импульса в
специфический эндокринный
а) образование и секрецию релизинг-факторов – главных регуляторов секреции гормонов гипофиза (гормоны образуются в мелкоклеточных ядрах подбугровой области, поступают в область срединного возвышения, где накапливаются и проникают в систему портальной циркуляции аденогипофиза и регулируют их функции);
б) образование нейрогипофизарных гормонов (гормоны сами образуются в крупноклеточных ядрах переднего гипоталамуса, спускаются в заднюю долю, где депонируются, оттуда поступают в общую систему циркуляции и действуют на периферические органы);
3) эндокринный (непосредственное влияние одних гормонов на биосинтез и секрецию других (тропные гормоны передней доли гипофиза, инсулин, соматостатин));
4) нейроэндокринный гуморальный. Осуществляется негормональными метаболитами, оказывающие регулирующее действие на железы (глюкозой, аминокислотами, ионами калия, натрия, простагландинами).
ЛЕКЦИЯ № 10. Характеристика отдельных гормонов
1. Гормоны передней доли гипофиза
Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – сложный орган, он состоит из аденогипофиза (передней и средней долей) и нейрогипофиза (задней доли). Гормоны передней доли гипофиза делятся на две группы: гормон роста и пролактин и тропные гормоны (тиреотропин, кортикотропин, гонадотропин).
К первой группе относят соматотропин и пролактин.
Гормон роста (соматотропин) принимает участие в регуляции роста, усиливая образование белка. Наиболее выражено его влияние на рост эпифизарных хрящей конечностей, рост костей идет в длину. Нарушение соматотропной функции гипофиза приводит к различным изменениям в росте и развитии организма человека: если имеется гиперфункция в детском возрасте, то развивается гигантизм; при гипофункции – карликовость. Гиперфункция у взрослого человека не влияет на рост в целом, но увеличиваются размеры тех частей тела, которые еще способны расти (акромегалия).
Пролактин способствует образованию молока в альвеолах, но после предварительного воздействия на них женских половых гормонов (прогестерона и эстрогена). После родов увеличивается синтез пролактина и наступает лактация. Акт сосания через нервно-рефлекторный механизм стимулирует выброс пролактина. Пролактин обладает лютеотропным действием, способствует продолжительному функционированию желтого тела и выработке им прогестерона. Ко второй группе гормонов относят:
1) тиреотропный гормон (тиреотропин). Избирательно действует на щитовидную железу, повышает ее функцию. При сниженной выработке тиреотропина происходит атрофия щитовидной железы, при гиперпродукции – разрастание, наступают гистологические изменения, которые указывают на повышение ее активности;
2) адренокортикотропный
гормон (кортикотропин). Стимулирует
выработку глюкокортикоидов над
3) гонадотропные гормоны (гонадотропины – фоллитропин и лютропин). Присутствуют как у женщин, так и у мужчин;
а) фоллитропин (фолликулостимулирующий гормон), стимулирующий рост и развитие фолликула в яичнике. Он незначительно влияет на выработку эстрагенов у женщин, у мужчин под его влиянием происходит образование сперматозоидов;
б) лютеинизирующий гормон (лютропин), стимулирующий рост и овуляцию фолликула с образованием желтого тела. Он стимулирует образование женских половых гормонов – эстрагенов. Лютропин способствует выработке андрогенов у мужчин.
2. Гормоны средней и задней долей гипофиза
В средней доле гипофиза
вырабатывается гормон меланотропин (