Механизм мышечного сокращения

Автор работы: Пользователь скрыл имя, 29 Сентября 2013 в 20:26, реферат

Описание работы

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных трубочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены последовательно, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.

Содержание работы

Структурная организация мышечного волокна 3
Механизм мышечного сокращения. 4
Режимы мышечного сокращения 5
Работа и мощность мышцы 7
Энергетика мышечного сокращения 8
Теплообразование при мышечном сокращении 9
Скелетно-мышечное взаимодействие 9
Эргометрические методы. 11
Электромиографические методы. 11
Физиологические свойства мышц 14
Расслабление скелетной мышцы 14
Сопряжение возбуждения и сокращения в скелетной мышце 15
Функции и виды мышечной ткани 16
Список Литературы: 20

Файлы: 1 файл

Реферат По физиологии На тему- «Механизм мышечного сокращения».doc

— 227.00 Кб (Скачать файл)

Российский Государственный Университет  Физической Культуры Спорта и Туризма

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Реферат

По физиологии

На тему: «Механизм  мышечного сокращения».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Работу выполнила :

Студентка 2 курса 1 группы

Института Рекреации и Туризма

Санькова Ирина

 

 

 

 

 

 

 

 

 

 

 

 

Москва,2008г.

 

 

 

 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

 

 

Структурная организация мышечного волокна.

 

 Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных трубочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены последовательно, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.

 

 

 

Изучение структуры  мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-микроскопические исследования показали, что поперечная исчерченность обусловлена особой организацией сократительных белков миофибрилл — актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина. Тропонин и тропомиозин играют важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-линия — структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 2.20, Б).

 

При электронной микроскопии  видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они  ориентированы по отношению к  оси миозиновой нити под углом 120°. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

 

Использование микроэлектродной техники в сочетании с интерференционной  микроскопией позволило установить, что нанесение электрического раздражения  на область Z-пластинки приводит к  сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых. В настоящее время выяснены многие детали этого механизма и теория получила экспериментальное подтверждение.

 

Механизм мышечного сокращения.

В настоящее время  принято считать, что биохимический  цикл мышечного сокращения состоит из 5 стадий (рис. 3):

 

1) миозиновая «головка»  может гидролизовать АТФ до АДФ и Н3РО4 (Pi), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис.3, а);

 

2) содержащая АДФ и  Н3РО4 миозиновая «головка» может  свободно вращаться под большим углом и (при достижении нужного положения) связываться с F-актином, образуя с осью фибриллы угол около 90° (см. рис. 22.8, б);

 

3) это взаимодействие  обеспечивает высвобождение АДФ  и Н3РО4 из актин-миозинового комплекса.  Актомиозиновая связь имеет наименьшую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис. 3, в);

 

4) новая молекула АТФ  связывается с комплексом миозин–F-актин (см. рис. 3, г);

 

5) комплекс миозин–АТФ  обладает низким сродством к  актину, и поэтому происходит  отделение миозиновой (АТФ) «головки»  от F-актина. Последняя стадия и  есть собственно расслабление, которое  отчетливо зависит от связывания АТФ с актин-миозиновым комплексом (см. рис. 3, д). Затем цикл возобновляется.

Рис.3

Режимы мышечного сокращения

 

 

 

В естественных условиях в организме одиночного мышечного  сокращения не наблюдается, так как  по двигательным нервам, иннервирующим  мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 2, Б).

 

 

Рис.2

•  Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

 

•  При более высокой  частоте импульсов очередной  импульс может совпасть с фазой  расслабления предыдущего цикла  сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

 

•  При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать  на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

 

 

Фазы  мышечного сокращения

 

При раздражении скелетной  мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 2, А):

 

•  латентный (скрытый) период сокращения (около 10 мс), во время  которого развивается потенциал  действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

 

•  фаза укорочения (около 50 мс);

 

•  фаза расслабления (около 50 мс).

 

Оптимум и пессимум частоты 

 

Амплитуда тетанического  сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 2 A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 2, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа и мощность мышцы

 

 

 

Поскольку основной задачей  скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мышца, и мощность, развиваемую ею при работе.

      Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное расстояние: А = FS. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.

     Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.

    При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при совершении движений — о динамической.

 

 Сила сокращения  и работа, совершаемая мышцей  в единицу времени (мощность), не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называется утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

 

 Статический режим  работы более утомителен, чем  динамический. Утомление изолированной  скелетной мышцы обусловлено  прежде всего тем, что в процессе  совершения работы в мышечных  волокнах накапливаются продукты  процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической работе в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голодание» и мышечное утомление прогрессивно нарастает.

                В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совершении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.

               Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уровень умственного напряжения уменьшает мышечную выносливость.

Энергетика мышечного сокращения

 

 

 

В динамическом режиме работоспособность  мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость расщепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2—3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

            При максимальной физической нагрузке происходит дополнительное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кислоты, т. е. метаболический ацидоз, и развивается утомление.

               Анаэробный гликолиз имеет место и в начале длительной физической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен обретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

 

Теплообразование при мышечном сокращении

 

 

 

 Согласно первому  закону термодинамики, общая энергия системы и ее окружения должна оставаться постоянной.

           Скелетная мышца превращает химическую энергию в механическую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:

 

 

 

1.     Теплота  активации — быстрое выделение  тепла на ранних этапах мышечного  сокращения, когда отсутствуют видимые  признаки укорочения или развития  напряжения. Теплообразование на  этой стадии обусловлено выходом  ионов Са2+  из триад и соединением  их с тропонином.

2.     Теплота  укорочения  —  выделение тепла   при  совершении работы, если  речь идет не об изометрическом  режиме. При этом, чем больше совершается  механической работы, тем больше  выделяется тепла.

3. Теплота расслабления — выделение  тепла упругими элементами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.

 

 Как отмечалось ранее, нагрузка  определяет скорость укорочения. Оказалось, что при большой  скорости укорочения количество  выделяющегося тепла мало, а при малой скорости велико, так как количество выделяющегося тепла пропорционально нагрузке (закон Хилла для изотонического режима сокращения).

 

Скелетно-мышечное взаимодействие

 

 

 

При совершении работы развиваемое  мышцей усилие передается на внешний объект с помощью сухожилий, прикрепленных к костям скелета. В любом случае нагрузка преодолевается за счет вращения одной части скелета относительно другой вокруг оси вращения.

Передача мышечного сокращения на кости скелета происходит при  участии сухожилий, которые обладают высокой эластичностью и растяжимостью. В случае сокращения мышцы происходит растяжение сухожилий и кинетическая энергия, развиваемая мышцей, переходит в потенциальную энергию растянутого сухожилия. Эта энергия используется при таких формах движения как ходьба, бег, т. е. когда происходит отрыв пятки от поверхности земли.

Информация о работе Механизм мышечного сокращения